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INTRODUCTION



CLUSTERED-CLUMPS

Definition

A clustered-clump of a given reduced set of strings P = {Py, -
any two consecutive positions in T' are covered by the same occurrence in T of a string P € P.

More formally, W is a clustered-clump for the set P such that

-+, Py} is a string T such that

vie {l,---,|T|} 3P € P,3j € Posy (P) such that j <i < j+ |P|—1,

where Posyy (P) is the set of positions of occurrences of P in T.

[llustration
P { — 5 - w om om 5 AN }
Clustered-Clump
T:
-m-mm- ~N
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MOTIVATION

Applications

Computational Biology: Compute Vision:
Gene Prediction Image Retrieval
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TECHNICAL BACKGROUND



TERMINOLOGY |

Degenerate symbol

® & over an alphabet X is a non-empty subset of 3.

® |5| denotes the size of the set.

Degenerate string

« X = X[1..n], is a string such that every X[i] is a degenerate symbol,
1<1<n.

b a
X a C a b
c c

Conserved degenerate string

A degenerate string where its number of non-solid symbols is upper-bounded by a fixed
positive constant.



TERMINOLOGY Il

Match

Two degenerate symbols o1 and o’p are said to match (represented as oy = ap) if
ay Nag # 0.

Two degenerate strings X and Y match (denoted as X ~ Y ) if |X| = |Y| and X[i]

~ Y[,
fori=1,---,|X]|.
~ la b a
X:p a (© e a p
- a b a
Y:[a@ c ¢ c (¢ a
Occurrence

e A degenerate string Y is said to occur at position i in another degenerate (resp. solid)

string X (resp. X) if Y =~ X[i..i4 |Y| —1] (resp. Y =~ X[i..i+ V]| —1]).



ALGORITHMIC TOOLS: SUFFIX TREE

Suffix Tree ([Crochemore et al., 2007])

® The suffix tree S(X) of a non-empty string X of length n is a compact trie representing all
the suffixes of X such that S(X) has n leaves, labelled from 1 to n.

e Example: X = “BANANAS$”;

® Linear Time and Space Construction ([Weiner, 1973, McCreight, 1976, Ukkonen, 1995])
® After Linear time pre-processing, constant-time answer to LCP queries.

® Generalised Suffix trees
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ALGORITHMIC TOOLS: AHO-CORASICK AUTOMATON

Aho-Corasick Automaton ([Crochemore and Rytter, 1994])

® The Aho-Corasick automaton of a set of strings P, denoted A(P), is the minimal partial
deterministic finite automaton accepting the set of all strings having a string of P as a suffix

e Example: P = {AGC,AGG,GCT,GA}

® Linear Time and Space Construction

® Linear Time Dictionary matching.
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CLUSTERED-CLUMPS ALGORITHMS

Input

A text T of length n and a set of patterns P = {Py, -, Pr}, such that m = >3, <, «,. | P;|.

Output

All clustered-clumps in T'.
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Input
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PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Input

A text T of length n, a set of conservative degenerate patterns P = {151, DS I_DT}, and integers
d and m, such that total number of non-solid symbols in P < d, and m = 37, <, <, | P;l.

Output

All clustered-clumps in T'.

Example

5. { ACIEIAA[GI[]TAA | aT[g)TT,

P; P:

T:CGACTAACATAACGAAGCTAATCTTAAC
A clEla alglE]lT 4 a
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PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.
« Find occurrences of solid subpatterns in 7T'.

« Compute the locations of clustered-clumps.
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Algorithm
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PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.

¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix):
* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.
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PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

» Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7'.

¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean

matrix):

* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.

Running time

Linear: (O(m + nd))



PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output
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PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

« Substitute.
» Find occurrences of solid patterns in T.
« Compute the locations of clustered-clumps.

Illustration

Pif{ ————————— e )
7 I I I L]
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PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

» Substitute.
¢ Obtain T\ by replacing each non-solid symbol with a unique symbol.

o Find occurrences of solid patterns in T.

» Compute the locations of clustered-clumps.

Illustration

P — » coooooocoocoacasa }
T B N
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PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

o Substitute.

o Find occurrences of solid patterns in 7).

e Use algorithm given by Crochemore et. al [Crochemore et al., 2016]:

e Build generalised suffix tree of T\ and the patterns in P.
¢ Checking whether a pattern P; occurs at a certain position in T is realized by at most
d longest common ancestor (LCA) queries.

« Compute the locations of clustered-clumps.

Illustration

P ) ©Soooooocooooooooo }
. )\1 )\2 )\3 )\4 >\5 A6
7 B BN B
n
V: [P
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PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

o Substitute.

» Find occurrences of solid patterns in 7).

o Compute the locations of clustered-clumps.
¢ Single scan of an array of size n that stores the length of the longest pattern occurring at
each position of the text.

Illustration

n

V: |P|
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PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis

o Substitute.
» Find occurrences of solid patterns in 7.

« Compute the locations of clustered-clumps.
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PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis

» Substitute. o(n)
» Find occurrences of solid patterns in 7). O(dn)
o Compute the locations of clustered-clumps. O(n)

Running time

Linear: (O(m + nd))
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PROBLEM 3: DEGENERATE TEXT & DEGENERATE PATTERNS

Input
A conservative degenerate text T of length n, a set of conservative degenerate patterns

P ={P1,---,P.}, and integers d and m, such that total number of non-solid symbols in both
T and P <dand m =3 <<, | Pl

Output

All clustered-clumps in T.

Algorithm

® Substitute to obtain T .
® Split patterns into solid subpatterns.
® Find occurrences of solid subpatterns in T .

® Compute the locations of clustered-clumps.

Running time
Linear: (O(m + nd))
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Thank You!

Contact: ritu.kundu@kcl.ac.uk
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