ING'S

K EPSRC

CLUSTERED-CLUMPS IN DEGENERATE STRINGS

- Efficient Algorithm for their Computation

Costas S. Iliopoulos, Ritu Kundu, Manal Mohamed
September 17, 2016

Presenting at: MHDW, AIAI' 2016

Travel Grants from: Institute of Mathematics & its Applications; KCL Graduate School

OUTLINES

Introduction
Technical Background
Algorithms

Summary

INTRODUCTION

CLUSTERED-CLUMPS

Definition

A clustered-clump of a given reduced set of strings P = {Py, -
any two consecutive positions in T' are covered by the same occurrence in T of a string P € P.

More formally, W is a clustered-clump for the set P such that

-+, Py} is a string T such that

vie {l,---,|T|} 3P € P,3j € Posy (P) such that j <i < j+ |P|—1,

where Posyy (P) is the set of positions of occurrences of P in T.

[llustration
P { — 5 - w om om 5 AN }
Clustered-Clump
T:
-m-mm- ~N

EXAMPLE

T:b b b ababababbbbabaababb

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

P { aba) bba }

EXAMPLE

P { aba) bba }

EXAMPLE

P { aba) bba }

EXAMPLE

P { aba) bba }

EXAMPLE

P { aba) bba }

EXAMPLE

MOTIVATION

Applications

Computational Biology: Compute Vision:
Gene Prediction Image Retrieval

o

MOTIVATION

Applications

Computational Biology: Compute Vision:
Gene Prediction Image Retrieval

Degeneracy?

o

TECHNICAL BACKGROUND

TERMINOLOGY |

Degenerate symbol

® & over an alphabet X is a non-empty subset of 3.

® |5| denotes the size of the set.

Degenerate string

« X = X[1..n], is a string such that every X[i] is a degenerate symbol,
1<1<n.

b a
X a C a b
c c

Conserved degenerate string

A degenerate string where its number of non-solid symbols is upper-bounded by a fixed
positive constant.

TERMINOLOGY Il

Match

Two degenerate symbols o1 and o’p are said to match (represented as oy = ap) if
ay Nag # 0.

Two degenerate strings X and Y match (denoted as X ~ Y) if |X| = |Y| and X[i]

~ Y[,
fori=1,---,|X]|.
~ la b a
X:p a (© e a p
- a b a
Y:[a@ c ¢ c (¢ a
Occurrence

e A degenerate string Y is said to occur at position i in another degenerate (resp. solid)

string X (resp. X) if Y =~ X[i..i4 |Y| —1] (resp. Y =~ X[i..i+ V]| —1]).

ALGORITHMIC TOOLS: SUFFIX TREE

Suffix Tree ([Crochemore et al., 2007])

® The suffix tree S(X) of a non-empty string X of length n is a compact trie representing all
the suffixes of X such that S(X) has n leaves, labelled from 1 to n.

e Example: X = “BANANAS$”;

® Linear Time and Space Construction ([Weiner, 1973, McCreight, 1976, Ukkonen, 1995])
® After Linear time pre-processing, constant-time answer to LCP queries.

® Generalised Suffix trees

ALGORITHMIC TOOLS: SUFFIX TREE

Suffix Tree ([Crochemore et al., 2007])

The suffix tree S(X) of a non-empty string X of length n is a compact trie representing all
the suffixes of X such that S(X) has n leaves, labelled from 1 to n.

¢ Example: X = “BANANAS$”; suffices: { BANANAS$, ANANAS, NANAS, ANAS, NAS, AS$, $
}

® Linear Time and Space Construction ([Weiner, 1973, McCreight, 1976, Ukkonen, 1995])
® After Linear time pre-processing, constant-time answer to LCP queries.

® Generalised Suffix trees

ALGORITHMIC TOOLS: SUFFIX TREE

Suffix Tree ([Crochemore et al., 2007])

The suffix tree S(X) of a non-empty string X of length n is a compact trie representing all
the suffixes of X such that S(X) has n leaves, labelled from 1 to n.

¢ Example: X = “BANANAS$”; suffices: { BANANAS$, ANANAS, NANAS, ANAS, NAS, AS$, $
}

® Linear Time and Space Construction ([Weiner, 1973, McCreight, 1976, Ukkonen, 1995])
® After Linear time pre-processing, constant-time answer to LCP queries.

® Generalised Suffix trees

ALGORITHMIC TOOLS: SUFFIX TREE

Suffix Tree ([Crochemore et al., 2007])

The suffix tree S(X) of a non-empty string X of length n is a compact trie representing all
the suffixes of X such that S(X) has n leaves, labelled from 1 to n.

¢ Example: X = “BANANAS$”; suffices: { BANANAS$, ANANAS, NANAS, ANAS, NAS, AS$, $
}

® Linear Time and Space Construction ([Weiner, 1973, McCreight, 1976, Ukkonen, 1995])
® After Linear time pre-processing, constant-time answer to LCP queries.

® Generalised Suffix trees

ALGORITHMIC TOOLS: AHO-CORASICK AUTOMATON

Aho-Corasick Automaton ([Crochemore and Rytter, 1994])

® The Aho-Corasick automaton of a set of strings P, denoted A(P), is the minimal partial
deterministic finite automaton accepting the set of all strings having a string of P as a suffix

e Example: P = {AGC,AGG,GCT,GA}

® Linear Time and Space Construction

® Linear Time Dictionary matching.

10

ALGORITHMS

CLUSTERED-CLUMPS ALGORITHMS

Input

A text T of length n and a set of patterns P = {Py, -, Pr}, such that m = >3, <, «,. | P;|.

Output

All clustered-clumps in T'.

12

CLUSTERED-CLUMPS ALGORITHMS

Input

A text T of length n and a set of patterns P = {Py, -, Pr}, such that m = >3, <, «,. | P;|.

Output

All clustered-clumps in T'.

Dealing with Degeneracy

Variations

12

CLUSTERED-CLUMPS ALGORITHMS

Input

A text T of length n and a set of patterns P = {Py, -, Pr}, such that m = >3, <, «,. | P;|.

Output

All clustered-clumps in T'.

Dealing with Degeneracy

Both are
degenerate
Patterns
. Text is
are Variations
degenerate
degenerate

12

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Input

A text T of length n, a set of conservative degenerate patterns P = {151, DS I_DT}, and integers
d and m, such that total number of non-solid symbols in P < d, and m = 37, <, <, | P;l.

Output

All clustered-clumps in T'.

Example

5. { ACIEIAA[GI[]TAA | aT[g)TT,

P; P:

T:CGACTAACATAACGAAGCTAATCTTAAC
A clEla alglE]lT 4 a

13

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Input

A text T of length n, a set of conservative degenerate patterns P = {151, DS I_DT}, and integers
d and m, such that total number of non-solid symbols in P < d, and m = 37, <, <, | P;l.

Output

All clustered-clumps in T'.

Example

5. { ACIEIAA[GI[]TAA | aT[g)TT,

P; P:

T:C GACTAACAT AACGAAGCT AATCTTAAC

Aclzla algIElT 4 a

13

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Input

A text T of length n, a set of conservative degenerate patterns P = {151, DS I_DT}, and integers
d and m, such that total number of non-solid symbols in P < d, and m = 37, <, <, | P;l.

Output

All clustered-clumps in T'.

Example

5. { ACIEIAA[GI[]TAA | aT[g)TT,

P; P:

13

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Input

A text T of length n, a set of conservative degenerate patterns P = {151, DS I_DT}, and integers
d and m, such that total number of non-solid symbols in P < d, and m = 37, <, <, | P;l.

Output

All clustered-clumps in T'.

Example

5. { ACIEIAA[GI[]TAA | aT[g)TT,

P; P:

13

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.
« Find occurrences of solid subpatterns in 7T'.

« Compute the locations of clustered-clumps.

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

o Split in solid subpatterns.
¢ Obtain the set P.

» Find occurrences of solid subpatterns in 7T'.

« Compute the locations of clustered-clumps.

Illustration

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

o Split in solid subpatterns.
¢ Obtain the set P.

» Find occurrences of solid subpatterns in 7T'.

« Compute the locations of clustered-clumps.

Illustration

P1,1 P1,2 P1,3 Pa P
= - ------ E---]

P: A

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

o Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean
matrix of size |P| X n):
e Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T.

« Compute the locations of clustered-clumps.

Illustration
P Pio Pis Py Py
P {EBE— BH— BH 'EB------ = --)

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

o Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean
matrix of size |P| X n):
e Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T.

« Compute the locations of clustered-clumps.

Illustration
Py Pio Pis Py Py
P {) =— o E------- =l --)
n
s
V: |P|

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

o Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean
matrix of size |P| X n):
e Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T.

« Compute the locations of clustered-clumps.

Illustration
P Pio Pis Py Py
P {) =— = ----—. =l --)
k k
|
s
V:
Pia v 14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

o Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean
matrix of size |P| X n):
e Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T.

« Compute the locations of clustered-clumps.

Illustration
Py Pio Pis Py Py
P {) =— = ----—. =l --)
K k
| |
s
V:

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

o Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean
matrix of size |P| X n):
e Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T.

« Compute the locations of clustered-clumps.

Illustration
Py Pio Pis Py Py
P {) =— o E------- =l --)
K k
| |
s

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

o Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean
matrix of size |P| X n):
e Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T.

« Compute the locations of clustered-clumps.

Illustration
Py Pio Pis Py Py
P {) =— = ----—. =l --)
k
s
P:1.3 v

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

« Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at
each position of the text.

Illustration

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at

each position of the text.

Illustration

Range

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at

each position of the text.

Illustration

Range

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at

each position of the text.

Illustration

Range

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at

each position of the text.

Illustration

Range

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at

each position of the text.

Illustration

Range

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Algorithm

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7T'.

o Compute the locations of clustered-clumps.
e Single scan of an array of size n that stores the length of the longest pattern occurring at

each position of the text.

Illustration

Clustered-Clump

14

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

« Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.

¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix):
* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

« Split in solid subpatterns. O(m)

» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P.

¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix):
* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

« Split in solid subpatterns. O(m)

» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P. O(m)
¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix):
* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

« Split in solid subpatterns. O(m)

» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P. O(m)
¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix):
e Whether previous subpattern occurs in the corresponding position. O(1)
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'. O(d)

« Compute the locations of clustered-clumps.

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis
« Split in solid subpatterns. O(m)
» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P. O(m)
¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix): O(nd)

* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis
« Split in solid subpatterns. O(m)
» Find occurrences of solid subpatterns in 7'.
¢ Build Aho-Corasick automaton of P. O(m)
¢ Find and store all the occurrences of the solid subpatterns in the text T (in a boolean
matrix): O(nd)

* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps. O(n)

PROBLEM 1: SOLID TEXT & DEGENERATE PATTERNS

Analysis

» Split in solid subpatterns.

» Find occurrences of solid subpatterns in 7'.

¢ Build Aho-Corasick automaton of P.
¢ Find and store all the occurrences of the solid subpatterns in the text 7' (in a boolean

matrix):

* Whether previous subpattern occurs in the corresponding position.
e Whether the non-solid symbols between previous subpattern and itself match the
corresponding positions in T'.

« Compute the locations of clustered-clumps.

Running time

Linear: (O(m + nd))

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example

P.{ AGC : AGG ; G CT . GAY}

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example
P A?C : __éTG_G___ ’ GICT ’ NC%\AA}
— 3 1
f.c A T T A [A] A ¢ ¢ [E ¢ T T

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example

P.{ AGC : AGG ; G CT . GAY}

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example
P A?C : __éTG_G___ ’ GICT ’ NC%\AA}
— 3 1
7.¢ A T T A [4 ¢ 4 c [E ¢ 1 7
AN Io}

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example

P.{ AGC : AGG ; G CT . GAY}

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example
7’={A/G—)C ’ __éTG_G__. ’ GICT ’ {%{‘A}
3 1
7. A T T A [¢ a4 ¢ c¢ [E ¢ T
AL ononoaoonanenans &

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Input

A conservative degenerate text T of length n, a set of patterns P = {Pj,--- , Pr}, and integers
d and m, such that the total number of non-solid symbols in 7 < d, and m = 37 <, <,. | P;l.

Output

All clustered-clumps in T'.

Example

P.{ AGC : AGG ; G CT . GAY}

16

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

« Substitute.
» Find occurrences of solid patterns in T.
« Compute the locations of clustered-clumps.

Illustration

Pif{ ————————— e)
7 I I I L]

17

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

» Substitute.
¢ Obtain T\ by replacing each non-solid symbol with a unique symbol.

o Find occurrences of solid patterns in T.

» Compute the locations of clustered-clumps.

Illustration

P — » coooooocoocoacasa }
T B N

17

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

o Substitute.

o Find occurrences of solid patterns in 7).

e Use algorithm given by Crochemore et. al [Crochemore et al., 2016]:

e Build generalised suffix tree of T\ and the patterns in P.
¢ Checking whether a pattern P; occurs at a certain position in T is realized by at most
d longest common ancestor (LCA) queries.

« Compute the locations of clustered-clumps.

Illustration

P) ©Soooooocooooooooo }
.)\1)\2)\3)\4 >\5 A6
7 B BN B
n
V: [P

17

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Algorithm

o Substitute.

» Find occurrences of solid patterns in 7).

o Compute the locations of clustered-clumps.
¢ Single scan of an array of size n that stores the length of the longest pattern occurring at
each position of the text.

Illustration

n

V: |P|

17

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis

o Substitute.
» Find occurrences of solid patterns in 7.

« Compute the locations of clustered-clumps.

18

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis

o Substitute. O(n)
» Find occurrences of solid patterns in 7.

« Compute the locations of clustered-clumps.

18

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis
o Substitute. O(n)
» Find occurrences of solid patterns in 7. O(dn)

« Compute the locations of clustered-clumps.

18

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis
o Substitute. O(n)
» Find occurrences of solid patterns in 7. O(dn)

« Compute the locations of clustered-clumps. O(n)

18

PROBLEM 2: DEGENERATE TEXT & SOLID PATTERNS

Analysis

» Substitute. o(n)
» Find occurrences of solid patterns in 7). O(dn)
o Compute the locations of clustered-clumps. O(n)

Running time

Linear: (O(m + nd))

18

PROBLEM 3: DEGENERATE TEXT & DEGENERATE PATTERNS

Input
A conservative degenerate text T of length n, a set of conservative degenerate patterns

P ={P1,---,P.}, and integers d and m, such that total number of non-solid symbols in both
T and P <dand m =3 <<, | Pl

Output

All clustered-clumps in T.

Algorithm

® Substitute to obtain T .
® Split patterns into solid subpatterns.
® Find occurrences of solid subpatterns in T .

® Compute the locations of clustered-clumps.

Running time
Linear: (O(m + nd))

19

SUMMARY

SUMMARY

Image
Retrieval

Gene
Prediction

Applications

Web-
mining?

Clustered-
Clumps

Both

Degenerate

q Text
Strings ex

Patterns

21

REFERENCES

B

) & & &)

Crochemore, M., Hancart, C., and Lecroq, T. (2007).
Algorithms on Strings.
Cambridge University Press.

392 pages.

Crochemore, M., Iliopoulos, C. S., Kundu, R., Mohamed, M., and Vayani, F. (2016).
Linear algorithm for conservative degenerate pattern matching.

Engineering Applications of Artificial Intelligence, 51:109 — 114.

Crochemore, M. and Rytter, W. (1994).
Text algorithms.
Oxford University Press.

McCreight, E. M. (1976).
A space-economical suffix tree construction algorithm.
Journal of the ACM (JACM), 23(2):262-272.

Ukkonen, E. (1995).
On-line construction of suffix trees.
Algorithmica, 14(3):249-260.

Weiner, P. (1973).
Linear pattern matching algorithms.
In Proceedings of the 14th IEEE Annual Symposium on Switching and Automata Theory,

pages 1-11. Institute of Electrical Electronics Engineer.

22

Thank You!

Contact: ritu.kundu@kcl.ac.uk

23

	Introduction
	Technical Background
	Algorithms
	Summary

