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ABSTRACT

Genomics, owing to its immediate applications in medicine, forensics, evolu-
tionary and molecular biology etc., has witnessed a dramatic advancement
in the technology of acquiring and generating data. Consequently, the bot-

tleneck of the information-extraction pipeline has shifted from data-acquisition to
the computational capacity for storing and processing prodigious amounts of data.
Uncertainty and identification of regularity in data are two key aspects contributing
to the complexity of the task of mining knowledge and insights from genomic data.

One form of macro-level uncertainty arises in sequential data when a single
representation is used for a multitude of strings which are by and large similar.
For example, in human genomics, the reference genome has been represented as
a single sequence so far. Now, with the availability of a vast collection of human
genomes, the so called reference cohorts seem more sensible in order to avoid the
reference-bias presented by a single genomic sequence. Different representations
have recently been explored in an attempt to organise human genomic sequences in
reference cohorts. Each such representation has its own challenges.

Moreover, in genomic sequences, local regularity (a term encapsulating various
forms of repetitions) is often flanked by regions of interest – genes, for example
– which are, in comparison, not regular. In other words, the regularity of a local
segment of genomic data is indicative of it being a potential biologically-important
region. One of the multiple possible ways to express this notion of local regularity of
strings can be in terms of unbordered factors of a string. A border of a string – one of
the central properties characterising the regularity associated with repetitions – is
its (possibly empty) proper factor occurring both as a prefix and as a suffix.

This dissertation presents an assortment of efficient novel algorithms – based on
string algorithms and data-structures – to solve three problems that find direct or
indirect applications in genomic data analysis. Specifically, the presented algorithms
handle the uncertainty arising in the representation of an ensemble of sequences
as well as characterise the regularity present in a sequence in terms of unbordered
factors.

Firstly, we present an optimal algorithm – in terms of both time and space –
improving the state-of-the-art, to identify Superbubbles (a special type of self-
contained subgraphs, each with a single source and a single sink) in de Bruijn
sequence graphs for genome assembly. Identifying these motifs in a reference graph
is crucial for overcoming the lack of a coordinate system in the graphical representa-
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tion of a reference cohort.
Secondly, we introduce another representation for sequential data with macro-

level uncertainty, called Elastic-degenerate strings. The motivation is to con-
dense a set of genomes (with variations) as a reference cohort. An elastic-degenerate
string is a string in which an elastic-degenerate symbol can occur at one or more
positions; each such symbol corresponds to a set of two or more variable-length
strings. We not only formalise the concept of elastic-degenerate strings but also
present a practically efficient algorithm to solve the pattern matching problem in a
given elastic-degenerate text.

Lastly, we provide a quasilinear time algorithm to compute the Longest Unbor-
dered Factor Array of a string w for general alphabets. This array specifies the
length of the maximal unbordered factor (the longest factor which does not have a
border) starting at each position of w. This is a major improvement on the running
time of the currently best worst-case algorithm working in O (n1.5) time for integer
alphabets, where n is the length of w. Although this problem is rooted in theory, the
data-structures proposed in this algorithm can be used to characterise the regularity
of a sequence; this has possible applications in genomics.

3



DEDICATION AND ACKNOWLEDGEMENTS

As this dissertation sums up my academic journey of the past three years, I
would like to take this opportunity to express my heartfelt gratitude to all
the people who made it possible.

First and foremost, I would like to thank my supervisors, Dr. Toktam Mah-
moodi and Dr. Solon Pissis, whose constant support and guidance made me sail
smoothly through to the end. Like ideal teachers, their supervision went beyond
research and career related advice – they ensured that I successfully overcome every
professional hurdle that I encountered. I aspire to emulate their zeal and sincerity
as scientists as well as their impeccable work ethics.

My sincerest thanks to Prof. Maxime Crochemore – I have learnt a great deal
from his insights on a wide range of disparate subjects concerning Algorithmics,
Science, World, Food, Life and so on. No amount of thanks will suffice for my col-
leagues and friends, Dr. Manal Mohamed and Panagiotis Charalampopoulos
(Panos). I feel that working with Manal has notably improved my scientific aptitude
and strengthened my technical foundations. More importantly, being a brilliant
scientist and a kind-hearted and affable human being, she has been a source of
inspiration. Similarly, Panos, due to his academic excellence and warm nature, has
always made our brainstorming sessions intellectually stimulating and pleasant. I
deeply appreciate the companionship of Manal and Panos through all my personal
and professional ups and downs.

My cordial thanks to Prof. Thomas Erlebach and Prof. Leszek Gąsieniec
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INTRODUCTION

S toring, processing, and analysing data are the fundamental stages in the

pipeline of extracting usable information from raw data. The more volumi-

nous the data, the more reliable is the extracted information, but also more

computationally challenging is its processing and analysis. Although computational

power has risen sharply over the last two decades, its growth has not been able

to keep pace with the explosive rate at which data is being generated. As a result,

the efficiency of algorithmic tools plays a crucial role in providing viable solutions

to various problems and issues encountered during a meaningful interpretation of

data.

Computational biology is one of the prominent fields to have witnessed a dra-

matic advancement in technology. This has shifted the bottleneck of the information-

extraction pipeline from data-acquisition to the computational capacity for storing

and analysing the prodigious amounts of data. Genomics, in particular, is a case in

point. A genome is the complete set of DNA (Deoxyribonucleic Acid) of an organism

for most species or of RNA (Ribonucleic acid) in some viruses. Genomics, being the

branch of molecular biology focussing on the structure, function, evolution, mapping

etc. of genomes, entails sequencing, assembling, and analysis of genomes. Genome

sequencing technology, which discerns the order of nucleotides making up an organ-

ism’s DNA, has progressed significantly from the initial sequencers developed about

40 years back [MG77, SNC77] to the current state-of-the-art "high-throughput"

(formerly, "next generation") sequencers (for an overview of sequencing technolo-
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Figure 1.1: Plot showing the exponential growth of number of sequences in the
GenBank and WGS databases.

gies, next generation sequencers, and their applications, see [Cha05, BdD14]). As

a concomitant effect, the rate at which sequences are added to the databases like

GenBank [CKML+16] over the past one and a half decade has been explosive; Figure

1.1 demonstrates the number of sequences submitted to GenBank including bulk

submissions of whole genome shotgun (WGS) projects (statistics taken from the

GenBank website [GS18]).

Owing to the immediate applications of genomics in medicine, forensics, evo-

lutionary and molecular biology etc., genome sequencing technology continues to

improve. Consequently, third generation sequencers like the Nanopore sequencer

[LGN16] have already emerged which makes sequencing possible at a rate that

was unimaginable before. For coping with this massive scale of production of ge-

nomic sequences, it has become vital to develop new and improved algorithmic

techniques and tools which can analyse and interpret this sequential data as fast

and as efficiently as possible.

The increased volume of the data is not the only emerging new challenge. Un-
certainty in the data is another and so is the need for identifying characteristic

regularity in it. Figure 1.2 delineates the general challenges in the analysis of ge-

nomic data. The challenging dimensions of uncertainty and identifying regularity in

data have been elucidated in the following two sections.
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Figure 1.2: Figure representing complexity in genomic data-analysis.

1.1 Uncertainty

Genomic data (DNA), at the most basic level, is structured as a sequence of repeating

subunits called nucleotides which are identified by four bases – adenine (A), cytosine

(C), guanine (G) and thymine (T). In other words, genomic sequences are strings
over the fixed alphabet (represented as Σ) consisting of {A, C, G, T}. Uncertainty

in genomic data is usually a causal effect of one or more of the following:

• Limitations of measurement technology: Inaccuracies or discrepancies in

data lead to uncertainty. Inaccuracies can be introduced in data by the errors

made during its collection or generation. For example, genome sequencers

are inherently inaccurate, resulting in erroneous and spurious readings in

determining which of the four bases occurs at a particular position.

• Data-representation: Modelling of the stored data in order to address spe-

cific concerns during its processing or analysis can give rise to uncertainty.

For instance, succinctly representing multiple similar genomes as one can

cause simple sequential raw data to transform into a form where multiple

subsequences can occur at the same position.

• Inherent nature of data: Genetic mutations and repeats in the genomic

sequences render the genomic data inconsistent and uncertain.

Uncertainty in sequential data can be characterised using various representa-

tions. One representation accommodating uncertainty is a degenerate (or indeter-
minate) string which manifests when the information about the exact letter at a
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given position is not known, but is suspected to be one of the specified letters; this

model was first used in the form of “generalised pattern matching” in [Abr87]. A

degenerate string is defined by the existence of one or more positions such that each

is represented by a set of letters from the alphabet. For instance,
[a
b
]
ac

[
b
c
]
a
[a
b
c

]
is a

degenerate string over Σ= {a,b,c} whereas abccbaba is a standard string over the

same alphabet.

A specific case of a degenerate string is a representation called a partial word
(introduced in [FP74]) in which every position contains either one letter or the set

consisting of all the letters in the alphabet. Usually, an asterisk ∗ or a diamond 3

represents a wildcard symbol (also called a don’t care symbol or a hole) that matches

any symbol in the alphabet. A partial word, thus, is a sequence of letters of the set

Σ
⋃

{∗}.

A gapped string is another way to capture uncertainty: it is an ordered col-

lection of solid strings separated by variable-length gaps defined by an ordered

collection of intervals (model introduced in [CS04]). Simply, a gapped string P can

be represented as follows [RIL+06]: P = P1∗a1,b1 P2∗a2,b2 P3 · · ·∗a`−1,b`−1 P`, where ∗
is a wildcard symbol; ∀i ∈ [1,`] each Pi is a string over Σ; and ∀i ∈ [1,`−1] each pair

(ai,bi) represents the gap (minimum and maximum number of wildcard symbols,

respectively) between two consecutive strings Pi and Pi+1.

While a degenerate or a gapped string is an effective representation for character
(or letter) level uncertainty, it is insufficient to encapsulate a macro level of uncer-

tainty that arises in data when it becomes necessary or advantageous to organise

multiple distinct-but-similar sequences into a single representation. More specifi-

cally, in genomics, an important class of problems is to study intra-species genetic

variation; state-of-the-art solutions for this class comprise of matching (mapping)

short strings (called reads) to a longer genomic sequence (canonical reference genome
obtained through assembly). Owing to the high diversity in biologically relevant

genomic regions in many organisms, the population level complexities cannot be

captured by the linear structure of a reference genome (see [LKM+14, PNEG17]).

Consequently, the recent research trend has been towards using alternative

representations of the genomic sequence (serving as a reference) for population-

based genome assembly [HPB13, CSS+15, DCI+15, MdOEMI16]. For example, in

human genomics, the reference genome has been represented as a single sequence

so far but with the availability of a vast collection of human genomes, the so called

reference cohorts seem more sensible in order to avoid the reference-bias presented
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by a single genomic sequence [PNEG17]. Different representations have recently

been explored in an attempt to organise human genomic sequences (which are highly

similar) in reference cohorts. Each such representation has its own constraints and

challenges.

One such challenge concerns the graphical representation of reference cohorts

based on de Bruijn graphs [PTW01], where the representation of data elements is or-

ganised around strings of k number of bases, or k-mers. In a de Bruijn graph [dB46],

each k−1 bases long prefix and suffix of the k-mers is represented as a vertex and

each k-mer is represented as a directed edge between its prefix and suffix vertices.

One of the major drawbacks suffered by this model is the problem in defining a

coordinate system which is an innate advantage of the linear structure [PNH14]. To

be able to define a locus on a reference cohort, one should be able to establish a map-

ping between various graphical motifs and elements or sites in genomic sequences.

One such motif called a “superbubble” has been proposed to define the concept of a

site in genome. This dissertation proposes an optimal algorithm to identify these

structures in a given graph.

Another contribution, in the same context of macro-level uncertainty, presented

in this dissertation is the introduction and formalisation of a new notion for repre-

senting reference cohorts, which we call “elastic-degenerate strings”.

1.2 Regularity

Multitudinous problems in genome assembly and inference can be reduced to the

core task of finding regularities in the sequential genomic data. Regularity in the

context of strings is an umbrella term used to encapsulate a variety of properties

related to the repetitive structure of a string. A few of the typical variants of

regularities for a string w have been briefly introduced below:

• Periodicity [Gus97, p. 42]: w is periodic if it can be expressed as the con-

catenation of several (more than 1) occurrences of a smaller string (substring),

say u. In other words, w = up such that p > 1 (up represents p concatenated

copies of u). The length of the smallest such substring is called the period. For

example, w = ababab is periodic with u = ab (as w = (ab)3).

• Repeat [Gus97, p. 143]: A substring u of w is a repeat if it has more than

1 occurrences in w. The occurrences can be overlapping, adjacent, or non
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adjacent. As an illustration, consider w = bababbbbaba. Here, u = bab is a

repeat with three occurrences (shown with two underlines and an overline).

• Repetition [Cro81]: A substring u of w is a repetition if it can be decomposed

into two or more adjacent occurrences of a substring v smaller than u i.e. u = vp

(where p in a positive integer greater than 1) and there is no occurrence of

v preceding or succeeding u. If p = 2, u is called a square. In w = baabababb,

u = ababab (underlined) exemplifies a repetition with v = ab and p = 3.

• Run [Smy02] (or maximal periodicity [Mai89]): A run is a generalised

repetition: a substring u of w is a run if it is made up of one or more consecutive

copies of v followed by a non-empty prefix of v. For example, v = abb constitutes

a run (corresponding u is underlined) in w = aaabbabbabbaba.

• Cover [AFI91]: A substring u of w is a cover if it has more than 1 overlapping

occurrences in w such that each letter of w is in some occurrence of u. For

instance, u = bab serves as a cover (occurrences demonstrated using underlines

and an overline) for w = bababbab.

• Seed [IMP96]: A seed is a generalised cover: a substring u of w is a seed
if it is a cover such that the first or/and the last occurrences of u are not

complete in the sense that the last occurrence can only be a non-empty prefix
of u and the first occurrence can only be a non-empty suffix. For example,

w = abbababbabba has u = bab as a seed such that its first (virtual) occurrence

is a suffix (ab) and the last one is only a prefix (ba).

Detailed surveys of various regularities of strings and their approximate gener-

alisations have been done in [Smy13] and [ZGI08], respectively.

The ability to identify and compute various repeated structures in given strings

is known to play a crucial role in many aspects of genomics. Subsequences of DNA

that actually code for proteins are interspersed by the non-coding subsequences. In

fact, in Eukaryotes, a very small proportion (< 2% [HL09]) of the genomic sequence

accounts for the coding sequences. On the other hand, the non-coding parts of DNA,

highly repetitive in structure, have been associated with multiple functions essential

for genome functioning [SvS05]. For instance, non coding regulatory regions control

when and where the expression (synthesis of genetic products like protein) of the

genes in their vicinity occur. Moreover, focussing on human genomics, over half
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of the genomic sequence has not yet been understood and has been shown to be

comprised of repetitive and repeat-derived sequences [dKGC+11].

Usually, occurrences of different forms of regularity are often flanked by re-

gions of interest – genes, for example – which are, in comparison, not regular. In

other words, local regularity in a segment of genomic data is indicative of potential

biologically-important regions for genome-analysis. One of the multiple possible

ways to express this notion of local regularity of strings can be in terms of “unbor-

dered factors” of a string. A border is one of the central properties characterising

regularity associated with the repetitions in a string. A border of a string w is a

(possibly empty) proper factor of w occurring both as a prefix and as a suffix of w.

For example, ε (empty string), a, aa, and aabaa are the borders of w = aabaabaa.

A maximal unbordered factor is the longest factor of w which does not have a

border, e.g. the maximal unbordered factor is aabab for the word w = baabab. With

the motivation of capturing the local regular structures in genomic sequences, this

dissertation also presents the characterisation of a sequence in terms of its maximal

unbordered factors.

Note that the term regularity here is different in meaning from the same term

that is generally used to characterise the exons (protein-coding sequences) and

introns (non-coding sequences) of DNA (and corresponding RNA transcripts) (see

[WPL+16] for example).

1.3 Contribution

Substantial work has been done in developing efficient algorithms for processing

and analysing biological data. The research corpus, however, still needs significant

enrichment, relatively speaking, when it comes to addressing the issue of macro-level

uncertainty incorporated therein. Furthermore, due to the computing cost involved

and the urgency with which data must be processed and analysed to keep up with

the massive incoming volume, efficiency of the tools is imperative. The broader

contribution of the research work presented in this dissertation is the development

of an assortment of efficient algorithms (and corresponding software tools) to address

the uncertainty arising in the representation of an ensemble of sequences and to

characterise local regularity present in a sequence in terms of maximal unbordered

factors.

This dissertation comprises of a series of algorithms (based on string-specific
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algorithms, data-structures, and properties) to solve various important research

problems (described below) that find direct or indirect applications in genomic data

analysis.

1.3.1 Identifying Superbubbles

Superbubbles (a special type of self-contained subgraphs, each with a single source

and single sink) are created when a graphical model is used to encode a set of

genomes (with variations) as a reference cohort. This structure provides an expres-

sive definition of a site to define a locus in the reference-representation. Identifying

these motifs in a reference graph is crucial in order to overcome the limitation of

lacking a coordinate system in the graphical representation of reference genomes.

We developed an optimal linear algorithm – in terms of both time and space – to

identify superbubbles in de Bruijn sequence graphs for genome assembly which

is an improvement on the previously best algorithm that runs in O (m logm) time,

where m is the number of edges in the graph. [Publication: [BIK+16]]

1.3.2 Pattern-matching in Elastic-degenerate Strings:

We introduced another representation to encapsulate the macro-level uncertainty

in sequential data—which we call elastic-degenerate strings—by extending and

combining the ideas of gapped strings and degenerate strings. An elastic-degenerate
string is a string in which an elastic-degenerate symbol can occur at one or more

positions; each such symbol corresponds to a set of two or more variable-length

strings. Another way to visualise an elastic-degenerate string is to see it as an

ordered collection of k > 1 strings interleaved by k − 1 elastic-degenerate sym-

bols. This generalisation of the concept of degeneracy is motivated by the advan-

tages of representing a set of related genomes (with variations) as the reference

genome for a population. For instance, consider the following set of strings over

Σ= {a,b,c}: {bccbcaabcabbb, bcaabcacbabb, bcacacacbabb}. One of their possi-

ble alignments is shown below.

b c c b c a a b c a b b b
b c a a b c a c b a b b
b c a c a c a c b a b b
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The elastic -degenerate string bc


cb

aab

aca

ca
[
abcab

cba

]
bb is a condensed represen-

tation of this set.

We not only formalised the concept of elastic-degenerate strings but also pre-

sented a practically efficient algorithm to solve the pattern matching problem in a

given elastic-degenerate text. [Publication: [IKP17]]

1.3.3 Computing Longest Unbordered Factor Array:

As mentioned earlier, a border u of a string w is a proper factor of w occurring both

as a prefix and as a suffix and the maximal unbordered factor of w is the longest

factor of w which does not have a border. We developed a quasilinear time (O (n logn)-

time with high probability or O (n logn log2 logn)-time deterministic) algorithm to

compute the Longest Unbordered Factor Array of w for general alphabets, where

n is the length of w. This array specifies the length of the maximal unbordered

factor starting at each position of w. This is a major improvement on the running

time of the currently best worst-case algorithm working in O (n1.5) time for integer

alphabets [Gawrychowski et al., 2015]. Moreover, we showed that the analysis of our

algorithm is tight: an infinite family of words that exhibit the worst-case behaviour

of the algorithm has been provided. [Publication: [KKMP18]]

Moreover, for each of the algorithms developed, a software implementation

has been done (in C/C++) and made freely available for public dissemination

(https://github.com/Ritu-Kundu).

Author’s Contribution:

For each of the algorithms presented in this dissertation, the author has contributed

significantly to the formulation of the main idea on which the algorithm is based; the

author is the main contributor in the development of the technical details required

to transform the main idea into the complete solution as well as in writing up

the algorithm for the respective scientific publication; the implementation of the

algorithm in the corresponding tool has been done by the author solely.
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1.4 Outline

The rest of the dissertation is organised in the following format: In Chapter 2, we

introduce the fundamental vocabulary, notions, notations, algorithmic tools and data-

structures etc. related to strings and graphs along with presenting the basic concepts

of genomics and genome sequencing that will be used throughout. However, topic-

specific preliminaries have been described only in the respective chapters. Chapter 2

is followed by chapters dedicated to superbubbles (Chapter 3), elastic-degenerate

strings (Chapter 4), and the longest unbordered factor array (Chapter 5), respectively.

Finally, Chapter 6 concludes the dissertation by summarising the contributions

presented in this dissertation and discussing the related open problems and future

research directions.
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PRELIMINARIES

Here we present the terminology and basic concepts that are used in the

context of String (Sections 2.1, 2.2, and 2.3) and Graph (Section 2.4) Algo-

rithms in order to lay the groundwork for the remainder of this dissertation.

The chapter-specific definitions, notations, and data structures have been provided

within each chapter. Moreover, in Section 2.5, we present simple biological concepts

related to genomics and genome sequencing. We end the chapter with Section 2.6

providing some notational and other conventions used in this dissertation.

2.1 Basic Notions and Notations

We begin with basic string-specific definitions and notations.

An alphabet Σ is a non-empty finite set whose elements are called letters (or

characters); the cardinality of the alphabet set |Σ| is called its size and is usually

denoted with the symbol σ. An alphabet can be ordered (i.e. it has a total ordering

of letters) or unordered (usually referred to as general). An integer alphabet is

an ordered alphabet where letters are integers from 1 to σ. In this dissertation,

unless stated otherwise, we will consider Σ to be ordered and of constant size (i.e.

σ=O (1)). For instance, the alphabet used for DNA sequences is Σ= {A,C,G,T} where

σ= 4.

A string (or word) is a finite sequence of letters drawn from a fixed alphabet

Σ. The length of a string x is denoted by |x|. The empty string is denoted by ε. For
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example, AACGACT is a string of length 7 over the DNA alphabet. A string x of length

n can be denoted using either of the following two notations:

• Sequence Notation: x = a1a2a3. .an such that ai ∈Σ ∀ i,1≤ i ≤ n.

• Array Notation: x = x[1 . .n]= x[1]x[2]x[3] . . x[n] such that x[i] ∈Σ ∀ i,1≤ i ≤
n; each i is called a position or an index.

Let Σk be the set of all finite strings of length k over Σ; Σ∗ is the set of all finite

strings over Σ including the empty string (Σ∗ =Σ0 ⋃
Σ1 ⋃

Σ2 . .); Σ+ is the set of all

finite strings over Σ excluding the empty string (Σ+ =Σ1 ⋃
Σ2 . .). Note that Σ∗ and

Σ+ themselves are infinite.

The concatenation of two strings u and v is the string composed of the letters

of u followed by the letters of v. It is denoted by uv or also by u · v to show the

decomposition of the resulting string. The concatenation operation is associative

(i.e. (uy)v = u(yv)) but not commutative (i.e. uv 6= vu). The empty string ε is the

identity element for the concatenation operation (i.e. x = εx = xε). A string composed

of concatenation of k copies of another string u is represented by uk; when k = 2, the

resulting string is called a square (i.e. x = u2 is a square). x = ACAC is an example of

a square where u = AC.

For a string x = x[1 . .n] over Σ such that x = uyv where u, y,v ∈Σ∗, the following

definitions hold:

• y is a factor or substringi of x. If y 6= x then y is a proper factor of x; y is

non-trivial factor if it is not empty. In array notation, a non-trivial factor

starting at some position i and ending at some position j (i.e. x[i]x[i+1] . . x[ j],
where 1≤ i ≤ j ≤ n) is represented as x[i . . j]. In this dissertation, we mean a

non-trivial factor when we refer to a factor (substring).

• u is a prefix of x. If u 6= x then u is a proper prefix of x; u is non-trivial
prefix if it is not empty. In other words, a non-trivial prefix is a factor starting

at position 1 (i.e. x[1 . . j]).

iA substring is different from a subsequence because a substring is a contiguous chunk whereas
a subsequence of a sequence is the resulting sequence obtained after deleting one or more letters in a
possibly non-contiguous fashion.
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• v is a suffix of x. If v 6= x then v is a proper suffix of x; v is a non-trivial
suffix if it is not empty. In other words, a non-trivial suffix is a factor ending

at position n (i.e. x[i . .n]).

A string x is periodic if it can be expressed as yk y′ where y ∈Σ+, k ≥ 1, and y′

is a non-trivial prefix of y. From another perspective, x is periodic if it is a prefix of

yk+1 with length > k|y|. Here, the length of y is called a period. Formally, an integer

p, 1≤ p ≤ n, is a period of a string x if and only if x[i]= x[i+p] for all i, 1≤ i ≤ n−p.

Note that n is always a period of w. The smallest period of x is called the minimum
period (or the period) of x. If a string is not periodic, it is called primitive. For

instance, x = ACACA is a periodic string with periods 5, 4, and 2 (2 is the period) while

the string x = ACGCC is a primitive string.

A string u is a border of a string x, if it is a proper prefix as well as a proper

suffix of x, i.e. x = uv = v′u for some non-empty strings v and v′. Note that the empty

word ε is a border of any word x. The longest border ( 6= w) is referred to as the
border. For example, A and ACA are borders of ACACA while ACA is the border. Period

and border are dual of each other and their relationship has been described in more

detail in Chapter 5. For a string x, a border array (or border table) is an array B
that records the length of the longest border for each prefix of a string i.e. B[i]= `
where ` is the length of the border of x[1 . . i]. Formally,

B[i]=
{

max{` | x[1 . .`]= x[i−`+1 . . i]}, for 1≤ `< i,
0 otherwise.

Example 2.1. Let x = aabbabaab. The border array is as follows.

i 1 2 3 4 5 6 7 8 9
x[i] a a b b a b a a b
B[i] 0 1 0 0 1 0 1 2 3

2.2 The Pattern Matching Problem

Two strings x and y over an alphabet Σ are said to match (represented as x = y)

if they have equal lengths (say n) and each letter of x is the same as that of y at

any given position (i.e. x[i]= y[i] ∀i,1≤ i ≤ n). If the corresponding letters at some

position are not the same (i.e. x[i] 6= y[i] for some i,1≤ i ≤ n), we say that there is

a mismatch at that position. Two matching strings x and y are said to be equal
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in lexicographic order; x is lexicographically smaller than y, denoted as x < y, if

either x is a proper prefix of y or the letters at the first mismatch position (say i) are

such that x[i]< y[i].
A shorter string y is said to occur (or have an occurrence) at some position

i in a string x if the substring of x starting at i and with its length equal to |y|
matches y (i.e. x[i . . i+|y|−1]= y). In the literature, the shorter and longer strings

are referred to as the pattern and the text, respectively; m and n usually denote

their respective lengths (m ≤ n).

The pattern matching problem, arising in numerous applications [Gus97], is

to find (or search) all the occurrences, if any, of a given pattern in a given text.

More specifically, this is exact pattern matching whereas an approximate version

allows errors (consisting of mismatches, insertions, deletions etc.) in the matches.

Furthermore, in the exact pattern matching problem, there are many variants:

• when the pattern and the text are given at the time of querying.

• when only the pattern is known beforehand.

• when only the text is known beforehand.

If we know the pattern (or text) in advance, we can pre-process it to answer a

search-query faster. Given a pattern P and a text T, a search-query itself can take

various forms, such as:

• Does P occur in T?

• How many occurrences of P are there in T?

• What are the positions of the occurrences of P in T?

In the classical sense, the pattern matching problem is to report all the occurrences

of P in T.

A naïve algorithm for searching the matches of a pattern P of length m in a text

T of length n is to test a position (say i) of T by aligning the beginning of P with i
and comparing P and T letter by letter from left to right until either a mismatch is

found (implying that there is no occurrence at i) or the pattern is exhausted (which

implies that P occurs at i). We test every position starting from 1 to n−m+1 (the

last position where the right ends of T and P can be aligned). This process can be

visualised as the pattern being slid over the text; testing some position and shifting
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the pattern by one position after every test. The running time of this approach is

O (nm). Below, we present the best known linear-time algorithm for the exact pattern

matching problem.

2.2.1 The KMP Algorithm and Failure Function

Knuth, Morris, and Pratt (KMP) introduced a linear-time algorithm in [KMP77] for

finding all occurrences of a pattern P in a text T. The KMP algorithm follows the

naïve approach for this problem, that is, it slides P across T, albeit shifting here

skips the maximum possible number of positions ensuring that no occurrence exists

at the skipped positions. The algorithm pre-processes P by computing a failure
function f that indicates the maximum possible shift using previously performed

symbol comparisons. Specifically, the failure function f (i) is defined as the length of

the longest prefix of P that is a suffix of P[1 . . i] ii; in fact, the failure function is the

border array of P. Note that the failure function can be constructed in time linear in

the length of the string i.e. in O (m) time for P.

The failure function is used as follows while searching: suppose a position i of T
is being tested and there is a mismatch after k letters (i.e. T[i . . i+k−1]= P[1 . .k]

but T[i+ k] 6= P[k+1]). If f (k) = ` (i.e. P[1 . .`] = P[k−`+1 . .k]), then the shift is

k−` due to the associativity of the matches. Similarly, if an occurrence has been

found at some position, the shift will be m− f (m). Consequently, by using the failure

function, the algorithm achieves an optimal search time of O (n) after O (m)-time

pre-processing.

2.3 Fundamental Data Structures

In the following, we present three prominent data structures supporting a wide

variety of string matching algorithms. In particular to this dissertation, these data

structures mainly serve the purpose of answering the Longest Common Prefix
(LCP) queries, defined as follows: “Given two indices i and j of a string, what is the

longest prefix common to both the suffixes that start at positions i and j?”. Usually

an LCP query is denoted by a function call LCP(i, j). For example, LCP(2,5) on

iiAn optimised version of KMP algorithm uses an additional condition, namely, if f (i)= ` then
the letters P[`+1] and P[i+1] are different.
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x = aabbabbaa is abba because it is the longest prefix of the suffixes starting at

positions 2 (abbabbaa) and 5 (abbaa); whereas LCP(3,5) is ε.

2.3.1 Suffix Tree:

The suffix tree S (x) of a non-empty string x of length n over a fixed-sized alphabet

is a compact trie representing all the suffixes of x such that S (x) has n leaves

labelled from 1 to n. Each internal node, other than the root, has at least two

children and each edge is labelled with a non-empty factor of x. No two edges out of

a node can have edge-labels beginning with the same letter. If v is a node of S (x),

then the path-label of v is the concatenation of the edge labels along the path from

the root to v; the length of the path-label is the string-depth of node v. For any

i, 1≤ i ≤ n, the path-label of the terminal node i is precisely the suffix x[i . .n]. Note

that, if the last letter of x is unique then every terminal node is a leaf i.e. every

suffix ends in a leaf node. In order to have a one-to-one correspondence between the

leaf nodes and the suffixes, we usually append a unique symbol (typically a “$” such

that $ 6∈Σ) to x.

Additionally, for any two suffixes u = x[i . .n] and v = x[ j . .n] of x, if w is the LCP

of u and v, then the path in S (x) corresponding to w is the same for u and v. In

other words, the string-depth of the Lowest Common Ancestor (LCA) node of the

two leaves is the same as the length of the LCP of the suffixes represented by those

leaves. For a general introduction to suffix trees, see [CHL07].

The construction of the suffix tree S (x) takes O (n) time and space using one of

the several seminal algorithms: Weiner’s [Wei73], McCreight’s [McC76], or Ukko-

nen’s [Ukk95]. Once the suffix tree of x has been constructed, the LCA of any two

leaves of S (X ), and thus the length of the LCP of any two suffixes of x, can be com-

puted in constant time after a linear-time pre-processing [HT84, SV88]. In addition,

it can be used to support queries that return all the occurrences of a given pattern

of length m in time O (m+ z) where z is the number of occurrences.

A generalised suffix tree is a suffix tree constructed for a set of strings [AFG+94,

Gus97]. It can be obtained, for a given set of l strings {x1, x2, · · · , xl} over Σ with total

combined length N (i.e.
l∑

i=1
|xi| = N), by constructing the suffix tree of the concate-

nated string x1$1x2$2 · · ·xl$l , where each $i ∀i ∈ [1 · · · l] is unique end-marker for

each string such that $i 6∈ Σ and $i 6= $ j ∀i, j ∈ [1 · · · l]. It should be clear that the

construction of the generalised suffix tree requires O (N) time.
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2.3.2 Enhanced Suffix Arrays

We denote by SA the suffix array [MM93] of a string x of length n. SA is an integer

array of size n storing the starting positions of all the (lexicographically) sorted

non-empty suffixes of w, i.e. for all 2≤ r ≤ n we have x[SA[r−1] . .n]< x[SA[r] . .n];

SA[r]= i implies that suffix starting at i has rank r in the sorted order. Effectively,

SA keeps the leaf order of the suffix tree (with edges ordered lexicographically

based on their labels) of x. SA, together with other auxiliary arrays, is known as the

enhanced suffix array [AKO02]; one type of the auxiliary arrays keeps the lengths

of the LCPs of lexicographically consecutive suffixes (i.e. the position i in this array

stores the length of the LCP of suffixes that have ranks i and i−1). An enhanced

suffix array can answer LCP queries in constant time and can be constructed in

O (n) space and O (n) time for integer alphabets [MM93, BFC00, KLA+01].

2.3.3 RMQ

The Range Minimum (or Maximum) Query problem, RMQ for short, is to pre-process

a given array A[1 . .n] for subsequent queries of the form: “Given indices i, j, what

is the minimum (or maximum) value of A[i . . j]?”. The problem has been studied

intensively for decades and several 〈O (n),O (1)〉-RMQ data structures (i.e. linear-

time pre-processing and constant-time to answer queries) have been proposed, many

of which depend on the equivalence between the Range Minimum (or Maximum)

Query and the Lowest Common Ancestor problems [HT84, FH06, Dur13].

2.4 Fundamentals of Graphs

A graph is a model to represent relationships between various entities (denoted by

nodes) using arcs. In this section, we present some fundamental notions, definitions,

and techniques related to graphs which will be used in the later chapters. Further

details of the presented concepts can be found in [THCS01].

Formally, a graph G = (V,E) consists of a set V of vertices (nodes) and a set E of

edges (arcs). An edge in E between a vertex u and a vertex v (u,v ∈V) is denoted as

the pair (u,v). Typically, the number of vertices and edges in a graph are represented

by positive integers n and m, respectively (|V| = n, |E| = m).

A graph is said to be undirected if an unordered pair represents an edge (i.e.

an edge (u,v) is same as the edge (v,u)); otherwise the graph is directed. Some of
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the common definitions in the context of graphs are as follows:

• Vertices u and v are adjacent vertices if and only if (u,v) is an edge in the

graph. The edge (u,v) in an undirected graph is said to be incident on vertices

u and v whereas in a directed graph it is referred to as incident from u to v.

• For an undirected graph, the degree du of a vertex u is the number of edges

incident on u. The analogous concept for a directed graph is that of in-degree
and out-degree; the in-degree d in

u of a vertex u is the number of edges incident

to u (incoming edges); the out-degree dout
u of a vertex u is the number of

edges incident from u (outgoing edges). A vertex having zero in-degree (i.e. no

incoming edges) is said to be a source vertex of the graph. Similarly, a vertex

with zero out-degree (no outgoing edges) is referred to as a sink vertex. The

vertices connected to some vertex in an undirected graph or via outgoing edges

in a directed graph are called the neighbours of that vertex.

• A path P from vertex v1 to vertex vk is a sequence of vertices P =< v1,v2, . . ,vk >
such that (vi,vi+1) ∈ E ∀i, 1≤ i ≤ k. P is said to be simple iff the vertices are

unique. A vertex v is said to be reachable from another vertex u if there is

a path from u to v. A cycle is a path such that v1 = vk. A cycle is said to be

simple if its vertices (except the first and the last) are unique.

• An undirected graph is connected if every vertex is reachable from every

other vertex. Analogously, a directed graph is said to be strongly connected
if every ordered pair of vertices is connected via a path.

• A Directed Acyclic Graph (DAG) is a directed graph without cycles. In a

DAG, we refer to a vertex v connected to a vertex u such that (v,u) ∈ E as a

parent of u; u is called a child of v.

• An acyclic connected graph is called a tree whereas an acyclic possibly dis-

connected graph is called a forest. If some vertex of a tree has been labelled

as the root, it becomes a rooted tree. Vertices of a rooted tree are usually

referred to as nodes. Note that there is a single unique path between any two

nodes of a tree. A rooted tree can be made directed by giving it an orientation

– every edge points away from the root (called an arborescence) or towards

it (called an anti-arborescence). In a rooted tree, if a node u is on the path

from the root to some node v then u is called an ancestor of v and v is called
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a descendant of u; if u is the last node on this path then u is referred to as

the parent of v and v is called a child of u.

• A graph G′ = (V′,E′) is a subgraph of another graph G = (V,E) if V′ ⊂V, E′ ⊂ E,

and an edge (u,v) ∈ E′ implies that u,v ∈V′. In other words, a subgraph contains

a subset of the vertices of the original graph and a subset of the edges between

only those vertices. If the subgraph contains all the edges (present in the

original graph) between the vertices selected by the subgraph then it is called

an induced subgraph (more specifically, a vertex induced subgraph). In this

dissertation, we will refer to a vertex induced subgraph as simply a subgraph.

2.4.1 Depth First Search

Visiting (thereby processing) every vertex of a graph while keeping the redundancy
(visiting the same vertex again) minimum is called the graph traversal problem.

One of the strategies for traversing a given graph is Depth First Search (DFS)

which proceeds by going as deep in the graph as possible and backtracking (going

back) when it encounters a dead-end. The DFS algorithm visits an unexplored

vertex (say v) to begin, then visits one of its unexplored adjacent vertices (say w),

then moves on to exploring vertices adjacent to w, and so on; if w has no unexplored

neighbour, it backtracks to v and starts exploring the other unexplored neighbours

of v. We usually label vertices as ‘unvisited’ , ‘finished’, and ‘discovered’ to indicate

their current states – an unexplored vertex is labelled ‘unvisited’; a vertex which

has no neighbour left to explore is labelled ‘finished’; ‘discovered’ is used for a vertex

which has been visited but has some neighbours which have not yet been marked

‘finished’. Initially all vertices are labelled ‘unvisited’. The algorithm stops when the

initial vertex is labelled ‘finished’. Note that if the graph is not connected, DFS will

be repeated starting from some other unexplored vertex until all the vertices have

been explored. DFS algorithm uses a stack explicitly or implicitly (via recursion) to

realise this particular order of visits. The running time of DFS is linear in the size

of the graph i.e. O (n+m).

In effect, DFS produces a spanning tree of the given graph. A spanning tree

of a graph G is a tree that is a subgraph containing all the vertices of G. We will

refer to the spanning tree resulting from DFS as the DFS-tree; the vertex with

which DFS begins is the root. We obtain a single DFS-tree if the graph is connected,

otherwise the result is a DFS-forest of multiple DFS-trees. The edges of a graph that
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r s t u

v w x y

Figure 2.1: An illustration of a DFS-tree. The tree edges have been highlighted. The
remaining edges are such that (r,w) is a forward edge, (x,w) is a back edge; (x,y) is a
cross edge. Observe the cycle < w,t,x,w>.

constitute its DFS-tree are called tree edges. The remaining edges can be classified

into the following three categories:

• Forward edges: An edge (u,v) is a forward edge if v is a descendent of u in

the DFS-tree.

• Back edges: An edge (u,v) is a back edge if v is an ancestor of u in the DFS-tree.

In DFS, v is labelled ‘discovered’ when the edge (u,v) is checked.

• Cross edges: An edge that is neither a forward edge nor a back edge is a cross
edge.

A cyclic graph will have at least one back edge whereas an acyclic graph contains

none. Figure 2.1 illustrates a DFS-tree rooted at vertex r (when the neighbours are

selected lexicographically) and the associated classification of the edges.

2.4.2 Topological Sort

A topological sort of a DAG G = (V,E) is a linear ordering of all its vertices such

that if G contains an edge (u,v), then u appears before v in the ordering. There exists

a classical linear-time (O (n+m)) algorithm for computing the topological ordering of

a directed acyclic graph [THCS01, Tar76]. In its recursive form, the algorithm visits

an unvisited vertex of the graph, finds its unvisited neighbour, say v, and performs

another topological sort starting from v. The algorithm returns if the current vertex

does not have unvisited neighbours. An example of topological sort has been shown

in Figure 2.2.
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(a)

r s t u

v w x y

(b)

r v s w t u x y

FIGURE 2.2. Vertices of the DAG shown in Figure (2.2(a)) are arranged in
topological order in Figure (2.2(b)).

2.4.3 Strongly Connected Components

A strongly connected component (SCC) of a directed graph is a maximal sub-

graph that is strongly connected (i.e. for every pair of vertices (u,v) in this subgraph,

there is a path from u to v); this subgraph is maximal in the sense that the subgraph

resulting from inclusion of any additional vertex in its vertex set will not be strongly

connected. An SCC is said to be singleton if it contains only one vertex; otherwise

it is non-singleton. There are several well known algorithms based on depth first

search which find the strongly connected components of a given DAG in linear-time

(O (n+m)) [Sha81, Tar72, Dij97]. Figure 2.3 demonstrates the strongly connected

components in the given graph.

2.4.4 De Bruijn Graph

In graph theory, the standard `−dimensional de Bruijn graph G = (V,E) [dB46] for

a given alphabet Σ is such that all the strings over Σ of length ` constitute V and

for every pair of vertices with an overlap of length `−1, there is an edge in E. More

precisely, if the suffix of length `−1 of a vertex u matches the prefix of length `−1

of another vertex v then (u,v) ∈ E. Note that u and v need not be distinct (i.e. edges

like (u,u) are possible).

In the context of genomics, a modified version of a de Bruijn graph is used

which is built for a given set of strings R and a positive integer k > 1. The vertices
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r s t u a b

d

v w x y c

Figure 2.3: There are five strongly connected components in this graph (marked
using the dotted elliptical shapes). The SCC consisting of the vertex d is singleton;
all others are non-singletons.

in this modified de Bruijn graph consist of all the distinct substrings of length k
(called k-mers) of the strings in R. The edge set is obtained in the standardiii way:

for all u,v ∈ V, an edge (u,v) is added if the k−1-length suffix of u matches the

k−1-length prefix of v. Figure 2.4 shows the de Bruijn graph corresponding to

R= {CAAAAT, CAATG} and k = 3.

CAA AAA

AAT ATG

FIGURE 2.4. De Bruijn graph corresponding to R = {CAAAAT,CAATG}
and k = 3.

iiiThis is a simplified version. In reality, there are weights on the edges reflecting the number
of times the k− length substring has appeared in R. In this dissertation, we do not consider the
weights on the edges.

36



CHAPTER 2. PRELIMINARIES

2.5 Basic Concepts of Genomics

In this section, we present an extremely simplified version of some biological notions

and gene sequencing which will help in understanding the biological context of the

problems for which algorithms have been presented in this dissertation. We refer

the reader to [MBCT15] for a detailed combinatorial perspective of the presented

concepts.

2.5.1 DNA, RNA, and Protein Sequences

DNA (Deoxyribonucleic acid) is a biomolecule carrying the genetic information

necessary for reproduction, growth, and functioning of living organisms (and some

viruses). It is a chain of building blocks called nucleotides; each nucleotide contains

one of the four bases – cytosine (C), guanine (G), adenine (A) or thymine (T). From

an informatics perspective, DNA can be seen as a string over an alphabet Σ =
{A,C,G,T}. DNA usually occurs in a double stranded form (i.e. two strands or

chains) intertwined in a double helical structure. The pairing between bases – A

with C and G with T – keeps the double helix stable. As a result, the strands are

complimentary to each other i.e. one strand can be obtained from the other by

simply replacing A with C (and vice versa) and G with T (and vice versa). Physically,

DNA is usually present in a condensed form called chromosomes, and the complete

set of all the DNA sequences of an organism is called a genome iv. A genome can be

as long as a few million base pairs (in bacteria) or more than a hundred billion base

pairs (human genome is about 3 billion base pairs long).

Proteins are biomolecules responsible for a wide range of essential functions

required in a life-form. A protein is a chain of smaller units called amino acids
folded into complex three-dimensional structures. Most proteins are made up of up

to 20 different amino acids. Thus, a protein molecule can be primarily thought of as

a string over an alphabet consisting of 20 letters. Protein sequences are encoded in

subsequences of DNA; such subsequences are called genes. Typically, in complex

life forms, a gene consists of short substrings called exons interspersed by large

substrings called introns. An ordered subset of exons, called a transcript, typically

corresponds to one protein. As a result, the same gene can have multiple transcripts

and thus encode multiple proteins. Encoding from DNA to protein is usually a three

ivIn most viruses, genome is composed of RNA (rather than DNA) sequences
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step process – transcription, splicing, and translation. In transcription, the two

strands open up and a complementary (with respect to one of the strands) RNA
molecule is produced; chemically, RNA is same as DNA with the only difference

being that T is replaced with another base U (uracil). Transcription is followed by

splicing (cutting off) introns to combine subsets of exons so as to produce one

or more transcripts. The result of the splicing process is called mRNA (matured

messenger RNA). In the final step i.e. translation, the mRNA is read sequentially

from left to right encoding a triplet of bases (called a codon) into specific amino

acids which are chained together to form the corresponding protein. The translation
table associating such triplets to amino acids is shared by most of organisms and is

called the genetic code.

The rate of transcription is controlled (inhibited or enhanced) by the binding of

specific proteins called transcription factors in specific regions called regulatory
regions. The DNA substrings to which transcription factors bind are called tran-
scription factor binding sites (TFBS). These are located in either the promoter
region (a 100-1000 base pair long region, which initiates the transcription process,

situated near the site at which the transcription of a gene starts) or at a large

sequential distance from the gene.

2.5.2 DNA Sequencing and Variant Calling

The genomes of individuals belonging to the same species typically have the same

number of chromosomes and by and large the same base sequences in a chromosome.

Consequently, a consensus or reference genome can represent a typical genome

associated with a species. However, mutations (permanent alteration of sequence

of a gene) and recombination (random cross over of chromosomes inherited from

mother and father in sexual reproduction) can cause genetic variations as the

genome is copied from cell to cell or from individual to individual across genera-

tions. Variations are usually small scale – mostly consisting of changes in single

bases (single nucleotide polymorphism or SNPs) and less frequently, insertion or

deletions of bases (InDels). Every possible variant found at some specific position

in a chromosome is called an allele (i.e. a different form of the same gene).

DNA sequencing is the process of inferring the base sequence that constitutes a

DNA sequence. DNA sequencing can be done for the whole genome (called whole
genome sequencing) or only specific portions (for example, only exons of genes).

To date, sequencing technologies have not advanced to the level where an entire
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chromosome can be (accurately) sequenced. The most-employed technique by the

state-of-the-art sequencers is to fragment a long sequence into smaller sequences

randomly, followed by the creation of copies of each fragment (amplification) and

then sequencing each fragment; each such sequenced fragment is called a read. In

this process, the information about the relative placement of the reads with respect

to the DNA is lost. Reads must be overlapping in order to have sufficient information

to stitch them together. Therefore, several rounds of this fragment-amplify-sequence
process are repeated. Stitching the reads together to infer the DNA sequence is

called fragment assembly or genome assembly – a non-trivial combinatorial

problem. Various other factors such as errors in reads while sequencing, repeats in

the DNA, variations etc. make the assembly problem even more complex.

Assembly can be categorised as de novo – when the reference genome is not

known – or mapping or resequencing otherwise. In mapping assembly, reads

are mapped or aligned to the most similar (based on some similarity or distance
measure) fragment in the reference genome. Subsequently, variations in the aligned

reads can be identified with respect to the reference (variant calling).

2.6 Conventions

For the algorithms presented in this dissertation, we assume the word-RAM model

[FW90] of computation with Ω(logn) bits in a computer-word (where n is the length

of the string in consideration). Analysis of space (memory) is in terms of computer-

words. Other conventions and notations being followed (unless specified otherwise)

are as follows

• log is to the base 2.

• We use the term algorithm for the pseudo-code specifying the main algorithm

solving the problem in consideration and subroutine for a module assisting the

main algorithm which consists of one or more functions.

• We denote a set using either curly brackets ({}) with its elements separated by

commas (,), or square brackets ([]) with the elements stacked vertically. A list

is denoted by elements separated by commas encapsulated in square brackets.

• x, y,u,v etc. are used to denote strings; an exception is using T or P for strings

representing the text and the pattern respectively in the pattern matching
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problem. Other representations have been listed below (examples listed in the

left column with the corresponding representations in the right column):

i, j,k,n,m, p integers
u, v, p, c vertices (teletype font family)
a, b, c, d alphabet-letters (teletypefont family)
ALGONAME name of algorithms / subroutines / functions
S sets
Array arrays
List lists
T trees
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3
SUPERBUBBLES

DNA sequencing is the process of determining the exact order of the nucleotide

bases in an individual’s genome in order to catalogue the sequence variation and un-

derstand its biological implications. Whole-genome sequencing techniques produce

masses of data in the form of short sequences known as reads. Assembling these

reads into a whole genome is a major algorithmic challenge. Most assembly algo-

rithms utilise de Bruijn graphs [dB46] constructed from the reads for this purpose. A

critical step of these algorithms is to detect typical motif structures in the graph; one

such complex subgraph class is the so-called superbubble. In this chapter, we propose

an O (n+m)-time algorithm to detect all superbubbles in a directed acyclic graph

with n vertices and m (directed) edges, improving the best-known O (m logm)-time

algorithm by Sung et al [SSS+15].

This chapter is organised as follows: we begin by providing the background and

reviewing related literature in Section 3.1. In Section 3.2, we define superbubbles,

introduce some of their properties, and give an overview of the previous state-

of-the-art algorithm. In Section 3.3, we outline the O (n+ m)-time algorithm for

computing superbubbles in a directed acyclic graph. We describe a method to validate

a candidate superbubble in constant time in Section 3.4. The algorithm is analysed

in Section 3.5. Finally, in Section 3.6, we brief the reader on the impact of the

contribution presented in this chapter.
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3.1 Background

Since the publication of the first draft of the human genome [LLB+01, VAM+01],

the field of genomics has changed dramatically. Recent developments in sequencing

technologies (see [Bal11], for example) have made it possible to sequence new

genomes at a fraction of the time and cost required only a few years ago. With

applications such as sequencing the genome of a new species, an individual within a

population, and RNA molecules from a particular sample, sequencing remains at

the core of genomics.

Whole-genome sequencing creates masses of data, in the order of tens of giga-

bytes, in the form of short sequences (reads). Genome assembly involves piecing

together these reads to form a set of contiguous sequences (contigs) representing

the DNA sequence in the sample. Traditional assembly algorithms rely on the

overlap-layout-consensus approach [Bat05], representing each read as a vertex in an

overlap graph and each detected overlap as a directed edge between the vertices cor-

responding to the overlapping reads. These methods have proved their use through

numerous de novo genome assemblies [BMK+08]. Please refer to Subsection 2.5.2

for a general introduction to sequencing and assembly processes.

Subsequently, a fundamentally different approach based on de Bruijn graphs was

proposed [PTW01], where representation of data elements was organised around the

words of k nucleotides, or k-mers, instead of reads. Unlike in an overlap graph, in a

de Bruijn graph (as described in Subsection 2.4.4), each k−1 nucleotide long prefix

and suffix of the k-mers is represented as a vertex and each k-mer is represented

as a directed edge between its prefix and suffix vertices. The marginal information

contained in a k-mer is its last nucleotide. In a de Bruijn graph, the assembly

problem is (ideally) reduced to finding an Eulerian path, that is, a trail that visits

each edge in the graph exactly once.

However, sequencing errors and genome repeats significantly complicate the de

Bruijn graph by adding false vertices and edges to it. Efficient and robust filtering

methods have been proposed to simplify the graph by filtering out motifs such as

tips, bubbles, and cross links, which proved to be caused by sequencing errors [ZB08].

In particular, a bubble consists of multiple directed unipaths where a unipath is a

path in which all internal vertices are of degree 2, from a vertex v to a vertex u and

is commonly caused by a small number of errors in the centre of the reads. Although

these types of motifs are simple and can easily be identified and filtered out, more
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complicated motifs prove to be more challenging.

Recently, a complex generalisation of a bubble, the so-called superbubble, was

proposed as an important subgraph class for analysing assembly graphs [OSS13].

A superbubble is defined as a minimal subgraph H in the de Bruijn graph with

exactly one start vertex s and one end vertex t such that (1) H is a directed, acyclic,

single-source (s), single-sink (t) graph (2) there is no edge from a vertex not in H
going to a vertex in H\{s}, and (3) there is no edge from a vertex in H\{t} going to a

vertex not in H. Please note that the definition of superbubbles is general (i.e. not

restricted to de Bruijn graphs only); consequently, the algorithms mentioned in this

chapter can be applied to any directed graph for finding superbubbles.

Superbubbles – originally associated with sequencing errors, inexact repeats,

diploid/polyploid genomes, or frequent mutations [OSS13] – have recently been

proposed to be used as definitions of sites (in the context of allele calling) [PNEG17].

Motifs like superbubbles emerge when new variants are added to the graphical

model of a reference cohort. Because of its ability to capture the nested relationships

between variants, a superbubble can overcome the lack of a coordinate system which

is a major limitation of graph-centred modelling of reference cohorts. A general

introduction to the concepts of a reference genome, genetic variations, allele calling

etc. has been provided in Subsection 2.5.2.

Onodera et al. [OSS13] gave the first algorithm to detect superbubbles that runs

in O (nm) time, where n is the number of vertices and m is the number of edges in

the graph. Given a directed graph G = (V ,E), this algorithm proceeds by iterating

a search step for each vertex with an assumption that it might be the source of a

superbubble. A search step visits vertices in the standard topological order, starting

from a given vertex s, to eventually report a vertex t such that 〈s,t〉 is a superbubble

(if any).

Subsequently, Sung et al. [SSS+15] gave an improved O (m logm)-time algorithm

to solve this problem. Their algorithm partitions the given graph into a set of

subgraphs such that the set of superbubbles in all these subgraphs is the same

as the set of superbubbles in the given graph. Superbubbles are then detected in

each subgraph; if it is cyclic, it is first converted into a directed acyclic subgraph by

duplicating vertices (and some edges) and employing depth-first search.

Our Contribution. The cost of partitioning the graph and transforming it into

the directed acyclic subgraphs, in the algorithm by Sung et al., is linear with respect

to the size of the graph. However, computing the superbubbles in each directed
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acyclic subgraph requires an overall O (m logm) time, which dominates the time

bound of the algorithm. We propose a new O (n+ m)-time algorithm to compute

all the superbubbles in a directed acyclic graph which eliminates this bottleneck,

resulting in an optimal linear-time algorithm overall.

Software Tool. The software tool implementing the presented algorithm as well

as the prior stages of generating the directed acyclic subgraphs from a given (general)

graph has been developed and made freely available for public dissemination (on

Github i).

3.2 Preliminaries

The concept of superbubbles was introduced and formally defined in [OSS13] as

follows.

Definition 3.1 ([OSS13]). Let G = (V,E) be a directed graph. For any ordered pair

of distinct vertices s and t, 〈s,t〉 is called a superbubble if it satisfies the following:

• reachability: t is reachable from s;

• matching: the set of vertices reachable from s without passing through t is

equal to the set of vertices from which t is reachable without passing through

s;

• acyclicity: the subgraph induced by U is acyclic, where U is the set of vertices

satisfying the matching criterion;

• minimality: no vertex in U other than t forms a pair with s that satisfies the

conditions above;

vertices s and t, and U\{s, t} used in the above definition are the superbubble’s

entrance, exit and interior, respectively.

We note that a superbubble 〈s,t〉 in the above definition is equivalent to a single-

source, single-sink, directed acyclic subgraph of G with source s and sink t, which

does not have any cut vertices (a cut vertex or articulation point in a connected graph

is the vertex which when removed from the graph along with the edges associated

ihttps://github.com/Ritu-Kundu/Superbubbles
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with this vertex, results in a disconnected graph) and preserves all in-degrees and

out-degrees of vertices in U\{s,t}, as well as the out-degree of s and in-degree of t.

Formally, the problem of identifying the superbubbles in a directed acyclic graph

G can be defined as follows:

IDENTIFICATION OF SUPERBUBBLES

Input: A directed acyclic graph G = (V,E).

Output: All the superbubbles 〈s,t〉 where s and t are in V.

As an illustration, consider a directed graph as shown in Figure 3.1. There are

five superbubbles in this graph: 〈v1,v3〉, 〈v3,v8〉, 〈v5,v7〉, 〈v11,v12〉 and 〈v8,v14〉. Here,

both 〈v5,v7〉 and 〈v11,v12〉 are nested superbubbles.

v1 v2 v3 v5 v6 v7 v8 v13 v14

v9

v11

v10

v12

v15

v4

Figure 3.1: A graph G with set of vertices V= {v1,v2, · · · ,v15} and five superbubbles:
〈v1,v3〉, 〈v3,v8〉, 〈v5,v7〉, 〈v11,v12〉 and 〈v8,v14〉.

We next state a few important properties of superbubbles which enable the linear-

time enumeration of superbubbles. Lemmas 3.1 and 3.2 were proved by Onodera et

al. [OSS13] and Sung et al. [SSS+15], respectively.

Lemma 3.1 ([OSS13]). Any vertex can be the entrance (respectively exit) of at most
one superbubble.

Note that Lemma 3.1 does not exclude the possibility that a vertex is the entrance

of a superbubble and the exit of another superbubble.

Lemma 3.2 ([SSS+15]). Let G be a directed acyclic graph. We have the following
two observations.

1) Suppose (p,c) is an edge in G, where p has one child and c has one parent,
then〈p,c〉is a superbubble in G.
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2) For any superbubble 〈s,t〉 in G, there must exist some parent p of t such that
p has exactly one child t.

Remark 3.1. Consider a graph G = (V,E) consisting of n vertices and n−1 edges
such that V= {v1,v2, . . ,vn} and E= {(vi−1,vi) | 1< i ≤ n}. As a consequence of the first
observation given in Lemma 3.2, G has the following superbubbles because each edge
corresponds to a superbubble: 〈vi−1,vi〉 ∀1< i ≤ n.

In this chapter, we start by showing another important property of superbubbles

that is closely-related to Lemma 3.2.

Lemma 3.3. For any superbubble 〈s,t〉 in a directed acyclic graph G, there must
exist some child c of s such that c has exactly one parent s.

Proof. Assume that all the children of s have more than one parent. Then, there

must be some cycle or some child c which has a parent that does not belong to the

superbubble 〈s,t〉. This is a contradiction. �

3.2.1 Previously Best Algorithm

The algorithm by Sung et al. works in four steps [SSS+15] to identify all the

superbubbles in a given directed graph G. These are as follows:

1. Partition: This step partitions the given graph into a set consisting of –

a) subgraphs corresponding to each non-singleton strongly connected com-

ponent (described in Subsection 2.4.3).

b) a subgraph induced by the set of all the vertices involved in singleton

strongly connected components.

This step proceeds by finding all the strongly connected components of G.

Then, for each non-singleton component (say Gn), two artificial vertices are

added (if needed) – one acting as the source and the other as the sink for this

component. Any outgoing edge from a vertex (say u) in Gn to a vertex outside

this component is replaced by an edge from u to the artificial sink. Similarly,

any incoming edge from a vertex outside the component to a vertex u in this

component is replaced by an edge from the artificial source to u. If there is no

incoming (or outgoing) edge outside the component then there is no need to

add the artificial source (or sink).
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On the other hand, an artificial source is always added to the subgraph (say

Gs) induced by singleton components. However, an artificial sink is added only

if needed. Any incoming (or outgoing) edge from (or to) a vertex outside Gs

to (or from) a vertex, say u, is replaced by an edge from the artificial source

(or u) to u (or sink), in the same fashion as done in a non-singleton strongly-

connected component. Additionally, an edge is added from the artificial source

to each of the original source vertices of Gs (i.e. vertices with in-degree 0).

For the sake of clarity, in the subsequent steps and to avoid testing the exis-

tence of an artificial source, we introduce a minor modification with respect

to the original algorithm in this step, which is to always include the artificial

source. Thus in the case of a subgraph corresponding to a strongly connected

component, if there is no incoming edge from a vertex outside the component

then an edge from the artificial source to an arbitrary vertex (except the

artificial sink) is added.

2. Conversion to an acyclic subgraph: This step creates a corresponding

acyclic graph from a graph containing one strongly connected component such

that both have the same superbubbles. This step will be executed for each

subgraph corresponding to a non-singleton strongly connected component (say

Gn). First, the recursive form of depth first search is run on Gn starting with

the artificial source to identify the back edges in the corresponding DFS-tree

(as described in Subsection 2.4.1). Subsequently, this step transforms Gn into

an acyclic G′
n as follows:

Let s denote the artificial source and t denote the artificial sink if it exists in

Gn. Each vertex u of Gn, except s and t (if it exists), is duplicated to create

another copy, say u′ (the duplicate copy is being denoted using a “prime” added

to the name of the vertex). All the vertices of Gn as well as these newly

created vertices (duplicates) constitute the vertex set of G′
n. The edge set of

G′
n comprises of edges added in accordance with the following rules:

• Every edge of Gn that involves s (i.e. (s,u)) is added without any change.

• Every edge of Gn that involves t leads to the addition of an edge between

the duplicate copy of the vertex u (i.e. u′) and t. In other words, an edge

(u,t) transforms into the edge (u′,t).

• Every edge (u,v) in which u is not the artificial source and v is not the

artificial sink leads to the addition of the following edges:
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– If (u,v) is not a back edge, the corresponding duplicate edges – (u,v)

and (u′,v′) – are added.

– If (u,v) is a back edge, an edge between the vertex u and the duplicate

of the vertex v i.e. v′ is added. Thus, the cycle is broken since G′
n has

no edge (u′,v).

This step culminates with the addition of an artificial sink if it does not exist

already, followed by the addition of edges from each vertex with no outgoing

edge (out-degree 0) to this artificial sink.

3. Identifying superbubbles in an acyclic subgraph: Given an acyclic sub-

graph, this step consists of repeating the following test on each vertex u in

topological order (defined in Section 2.4.2), assuming that u is the exit of some

superbubble:

Every vertex in the parent set of u which has only u as its child is ‘merged’

with u till such a vertex exists and is not the last vertex in the parent-list
(a list maintaining parents of u). At this point, if p is the only vertex in the

parent set of u with only one child (which is u), then the vertices p and u form a

superbubble. The superbubble 〈p,u〉 is reported in that case and the vertex p is

also merged with u. Merging some vertex v with another vertex u, here, refers

to merging the lists of the parents of the two vertices. Each vertex which exists

in both the lists is added just once and its out-degree is adjusted by reducing

it by one; vertex v is removed from the parent list of u and is deleted from

the graph with the corresponding changes in the edges. Note that this step

is dominated by the merging of parent-lists which can be done in O (m logm)

time for all the vertices if parent-lists are maintained as AVL trees [AL62]

(see [SSS+15] for further details).

4. Filtering: In this step, valid superbubbles are extracted from the list of those

reported by the previous step. Any superbubble with an artificial source as its

entrance or an artificial sink as its exit is a ‘spurious’ superbubble. Similarly,

a superbubble whose entrance is not from the original set of vertices (i.e.

the entrance is some duplicate of a vertex created in Step 2) is a spurious

superbubble. Therefore, we extract from the reported list of superbubbles only

those superbubbles whose entrance is a vertex in the original graph, and test

for its validity as follows:
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• Superbubble 〈u,v〉 is valid if the vertex u is an ancestor of the vertex v in

the DFS-tree of the subgraph and their duplicate vertices (u′ and v′) also

form a superbubble.

• Superbubble 〈u,v′〉 is valid if the vertex v (vertex whose duplicate is v′) is

an ancestor of the vertex u in the DFS-tree of the subgraph.

To summarise, this algorithm detects all the superbubbles in a given graph by

first partitioning the graph using Step 1 and then for each subgraph executing

Step 3 after turning it into an acyclic variant (if needed) using Step 2. Invalid and

spurious superbubbles (generated due to the duplication step) are filtered out in the

end.

3.3 Our Algorithm to find Superbubbles

As mentioned earlier, the bottleneck of the algorithm by Sung et al. is Step 3. All

other steps can be executed in time that is linear in the size of the given graph. We

propose an algorithm to improve this step – our main contribution is the proposed

algorithm SUPERBUBBLE that reports all superbubbles in a directed acyclic graph

G = (V,E) with exactly one source (vertex with in-degree 0) and exactly one sink

(vertex with out-degree 0). For the sake of simplicity, for the rest of this chapter

and in all the propositions, lemmas and theorems that follow, we use G to denote

a directed acyclic graph with exactly one source and exactly one sink, and we use

n and m to denote the number of its vertices and edges respectively, that is, for

G = (V ,E) we have n = |V | and m = |E|.

3.3.1 An Overview

The algorithm SUPERBUBBLE starts by topologically ordering the vertices of graph

G and then identifying all the candidates of the possible entrances and exits of

superbubbles according to Lemmas 3.2 and 3.3. The aim of this algorithm is accom-

plished with the help of the subroutine VALIDATESUPERBUBBLE, explained in the

following section, which checks whether a given candidate 〈s,t〉 is a superbubble or

not; if it is not, the algorithm returns an alternative entrance for a superbubble that

ends at t, or −1 if it is clear that such an entrance does not exist.
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3.3.2 Topological Ordering (ORD)

A topological ordering of G (represented using an array ORD) maps each vertex to

an integer between 1 and n, such that ORD[x]<ORD[y] holds for all edges (x, y) ∈ E.

There exists a classical linear-time algorithm for computing the topological ordering

of a directed acyclic graph as has been described in Subsection 2.4.2.

The subroutine TOPOLOGICALSORT, given below, is a simplified version that

takes as input a single-source, single-sink directed acyclic graph, and produces a

topological ordering of vertices. For the graph G in Figure 3.1, TOPOLOGICALSORT

produces the ordering given in Figure 3.2.

Subroutine 3.1 TOPOLOGICALSORT : Computes the topological ordering (ORD) of
the given G.

1: function TOPOLOGICALSORT(G) .

Assumes that G is a directed acyclic graph with one source vertex, denoted source

2: order← n . a global variable

3: for all (v ∈V) do
4: Visited[v]← false
5: end for
6: RECURSIVETOPOLOGICALSORT(G,source)
7: end function

8: function RECURSIVETOPOLOGICALSORT(G,v)

9: Visited[v]= true
10: for all w ∈V adjacent to v do
11: if Visited[w]= false then
12: RECURSIVETOPOLOGICALSORT(G,w)
13: end if
14: end for
15: ORD[v]← order
16: order← order−1
17: end function

Importantly, in this chapter we do not consider just any topological ordering of

graph G but only the one obtained by the subroutine TOPOLOGICALSORT. Note that

this algorithm finds a directed spanning tree T of G rooted at the source, which

contains a path from the source to any vertex in G. The directed spanning tree T

of G obtained by the subroutine TOPOLOGICALSORT is presented by bold edges in
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v1 v2 v3 v11 v12 v5 v9 v6 v10 v7 v4 v8 v13 v15 v14

Figure 3.2: Vertices of Figure 3.1 in topological order, where ORD[v1]= 1, ORD[v2]=
2, ORD[v3] = 3, ORD[v4] = 11, ORD[v5] = 6, ORD[v6] = 8, ORD[v7] = 10, ORD[v8] =
12, ORD[v9] = 7, ORD[v10] = 9, ORD[v11] = 4, ORD[v12] = 5, ORD[v13] = 13,
ORD[v14]= 15 and ORD[v15]= 14

Figure 3.2. It may be worth recalling that a directed rooted tree is also known as

arborescence.

We next present a few important properties of the topological ordering obtained

by the subroutine TOPOLOGICALSORT.

Proposition 3.1. For any topological ordering ORD of vertices in graph G, if vertex
u is reachable from v, that is, if there is a path from v to u, then ORD[v]<ORD[u].

Proof. If the path from v to u is of length 1, i.e., there is an edge (v,u), then by the

definition of topological ordering we have ORD[v]< ORD[u]. Otherwise, we denote

the path from v to u of length k, k > 1, as v,x1, . . . ,xk−1,u. Then, by the definition

of topological ordering we have ORD[v]<ORD[x1]< ·· · <ORD[u]. Transitively, we

have ORD[v]<ORD[u]. �

Note that ORD[v]<ORD[u] does not imply that a path from v to u exists.

Proposition 3.2. Let ORD be a topological ordering and T be a directed rooted
spanning tree of graph G obtained by the subroutine TOPOLOGICALSORT. If there
is a path in T from a vertex v to a vertex u, then, for each vertex w such that
ORD[v]<ORD[w]<ORD[u], there is a path from v to w.

Proof. Recall that T contains a path from the root to each vertex of the tree;

this is also true for each subtree of T . Furthermore, if there is a path from v to

u in T , then u is contained in a subtree of T rooted at v, and each w such that

ORD[v]<ORD[w]<ORD[u] is also contained in the subtree rooted at v (but not in

the subtree rooted at u). Therefore, there is a path from v to w, for each w such that

ORD[v]<ORD[w]<ORD[u]. �
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We next show that in an ordering obtained by TOPOLOGICALSORT, a vertex

has its topological ordering between the orderings of the entrance and the exit of a

superbubble if and only if it belongs to the superbubble.

Lemma 3.4. Let graph G contain a superbubble 〈s,t〉. Then a topological ordering
obtained by TOPOLOGICALSORT has the following properties.

1. For all x such that x ∈U\{s,t}, ORD[s]<ORD[x]<ORD[t].

2. For all y such that y 6∈U, ORD[y]<ORD[s] or ORD[y]>ORD[t].

Proof. Recall that U is the set of vertices forming a superbubble (see Definition 3.1).

1. Since there is a path from the entrance s of the superbubble to all x ∈U\{s},

by Proposition 3.1 we have ORD[s] < ORD[x] for all x such that x ∈ U\{s}.

Similarly, since there is a path from all x ∈U\{t} to the exit t of the superbub-

ble, by Proposition 3.1 we have ORD[x]<ORD[t] for all x such that x ∈U\{t}.

Therefore, for all x such that x ∈U\{s,t}, ORD[s]<ORD[x]<ORD[t].

2. Suppose the contrary, that is, suppose that there exists some y 6∈ U such

that ORD[s]<ORD[y]<ORD[t]. Since the superbubble 〈s,t〉 is itself a single-

source, single-sink subgraph of G, any directed spanning tree of G rooted at the

source (i.e. vertex s), will contain a path from s to t. Then, by Proposition 3.2

there also exists a path from s to y in T and thus also in G. However, by

the definition of the superbubble, the only vertices reachable from s without

going through t are the internal vertices of the superbubble — a contradiction.

Therefore, for all y such that y 6∈ U, either ORD[y] < ORD[s] or ORD[y] >
ORD[t].

�

3.3.3 Candidate List (Candidates)

The algorithm SUPERBUBBLE, after topologically ordering the vertices of graph G,

checks each vertex in V in topological order to identify whether it is an exit or an

entrance candidate (or both). According to Lemmas 3.2 and 3.3, a vertex v is an exit

candidate if it has at least one parent with exactly one child (out-degree 1) and an

entrance candidate if it has at least one child with exactly one parent (in-degree

1). These identified entrance and exit candidates are stored in a doubly-linked list
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
v1 v2 v3 v11 v12 v5 v9 v6 v10 v7 v4 v8 v13 v15 v14

entrance X X X X X X
exit X X X X X X

Figure 3.3: Candidate list for Figure 3.1. Candidates = [v1(entrance), v3(exit),
v3(entrance), v11(entrance), v12(exit), v5(entrance), v10(exit), v7(exit), v8(exit),
v8(entrance), v13(entrance), v14(exit)]. Note that both v3 and v8 appear twice in
the list.

(represented as Candidates) ; specifically, an element of the list is a vertex along with

a label specifying if it is an entrance or an exit candidate. Note that if a vertex v is

both an exit and an entrance candidate, then v appears twice in the candidate list,

first as an exit and then as an entrance (Figure 3.3). The elements of the candidate

list are ordered according to ORD. There are at most 2n candidates, thus the cost

of constructing a doubly-linked list of all the candidates is linear in n. In addition,

each exit candidate in Candidates points to the nearest previous entrance candidate

in the list. The candidate list of the graph in the running example has been shown

in Figure 3.3.

3.3.4 Core of the Algorithm

Once the topological order ORD and the candidate list Candidates of graph G have

been computed, the algorithm SUPERBUBBLE (pseudo-code given as Algorithm 3.2)

processes the candidates list in decreasing topological order (backwards). Let the list

of candidates be [v′1,v′2, . . . ,v′
`
]. The algorithm examines the candidates in decreasing

order and does the following:

• If v′j is an entrance candidate, then delete v′j ;

• If v′j is an exit candidate, then the subroutine REPORTSUPERBUBBLE is called

to find and report the superbubble ending at v′j, that is, the superbubble 〈v′i,v′j〉,
for some entrance candidate v′i. REPORTSUPERBUBBLE also recursively finds

and reports all the nested superbubbles between v′i and v′j with the help of

recursive calls to itself.

For clarity of presentation, we next provide a list and a short description of the

functions and arrays used by the algorithm SUPERBUBBLE and the subroutines
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that it uses: REPORTSUPERBUBBLE and VALIDATESUPERBUBBLE. For the sake of

simplicity, we use a vertex and its corresponding candidate (element in the candidate

list) interchangeably. This does not add to the complexity of the algorithm as we

can use an auxiliary array VerToCand, where VerToCand[i] stores a pointer to the

element corresponding to the vertex vi in Candidates so as to provide a constant-time

conversion from a vertex to the corresponding candidate.

1. ENTRANCE(v) takes as input a vertex v and outputs TRUE if v is an entrance

candidate, that is, if it satisfies Lemma 3.3, and FALSE otherwise.

2. EXIT(v) takes as input a vertex v and outputs TRUE if v is an exit candidate,

that is, if it satisfies Lemma 3.2, and FALSE otherwise.

3. INSERTENTRANCE(v) takes as input a vertex v, inserts it as a candidate at

the end of Candidates and labels it as entrance.

4. INSERTEXIT(v) takes as input a vertex v, inserts it as a candidate at the end

of Candidates and labels it as exit. In addition, it also stores a pointer for this

exit candidate; the pointer points to the nearest entrance candidate appearing

before this exit candidate in Candidates . Note the subtle consequence of the

order of adding candidates – if v is also an entrance candidate, it is first added

as an exit candidate and then as an entrance candidate. Therefore, the exit

candidate corresponding to v will always point to some entrance candidate

corresponding to a vertex other than v.

5. HEAD(Candidates ) and TAIL(Candidates ) return the first and the last element in

Candidates , respectively.

6. DELETETAIL(Candidates ) deletes the last element in candidates.

7. NEXT(v) returns the candidate following v in candidates.

8. PVSENTRANCECANDIDATE(v) takes as input a vertex v which is an exit can-

didate and returns the nearest entrance candidate appearing before this exit

candidate in Candidates .

9. VERTEX(i) returns the vertex that has the topological order i i.e. outputs

vertex v such that ORD[i]= v.
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In addition to the above subroutines, the following arrays have been utilised

explicitly.

1. The array ORD stores the topological order of the vertices.

2. The array PvsEntrance stores the previous entrance candidate s for each vertex

v (v is not necessarily a candidate). Formally, PvsEntrance[v] = s, where s is

an entrance candidate such that ORD[s] ≤ ORD[v] and there does not exist

another entrance candidate s′ such that ORD[s] < ORD[s′] < ORD[v]. Note

that in case v is an entrance candidate, PvsEntrance[v] = v. For instance,

note that for the aforementioned example graph, PvsEntrance[v6] = v5 and

PvsEntrance[v13]= v13.

3. The array AltEntrance is used to reduce the number of entrance−exit pairs that

need to be considered as possible superbubbles. Array AltEntrance is further

detailed in Subsection 3.4.1.

Remark 3.2. It is also possible to design the algorithm for moving forward in the
topological order instead of backwards.

Note that the subroutine REPORTSUPERBUBBLE is called for each exit candidate

in decreasing order either by the algorithm SUPERBUBBLE or through a recursive

call to identify a nested superbubble. A call to REPORTSUPERBUBBLE(start, exit)

checks the possible entrance candidates between start and exit, starting with the

nearest previous entrance candidate (to exit). This task is accomplished with the

help of the subroutine VALIDATESUPERBUBBLE, explained in the following section,

which checks whether a given candidate superbubble 〈s,t〉 is a superbubble or not;

if it is not, the algorithm returns either a “-1" which means that no superbubble

ends at t, or an alternative entrance candidate for a superbubble that could end at

t.

Remark 3.3. We can avoid using the flag variable found by simply testing whether
s = valid. This is because if an exit is tested with start itself, either s (valid su-
perbubble) or -1 is returned by VALIDATESUPERBUBBLE (i.e. there can not be an
alternative entrance with topological order less than that of the starting vertex start).
However, use of the flag makes the correctness more explicit and clearer.
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Algorithm 3.2 SUPERBUBBLE : Identifies superbubbles of the given directed acyclic
graph G.

1: function SUPERBUBBLE(G)

. Initialisation:
2: TOPOLOGICALSORT(G)
3: prevEnt←null
4: for all v in topological order do
5: AltEntrance[v]←null
6: if EXIT(v) then
7: INSERTEXIT(v)
8: end if
9: if ENTRANCE(v) then

10: INSERTENTRANCE(v)
11: prevEnt← v
12: end if
13: PvsEntrance[v]← prevEnt
14: end for

. Main:
15: while Candidates is not empty do
16: if ENTRANCE(TAIL(Candidates)) then
17: DELETETAIL(Candidates)
18: else
19: REPORTSUPERBUBBLE(HEAD(Candidates),TAIL(Candidates))
20: end if
21: end while
22: end function

For the graph G in Figure 3.1, the algorithm SUPERBUBBLE makes exactly three

calls to the subroutine REPORTSUPERBUBBLE:

1. REPORTSUPERBUBBLE(v1,v14):

First, it checks the exit candidate v14 against the nearest previous entrance

candidate, i.e. the vertex v13. The call to VALIDATESUPERBUBBLE(v13,v14)

returns v8 as an alternative entrance candidate. The new candidate is then

checked and the superbubble 〈v8,v14〉 is reported.

2. REPORTSUPERBUBBLE(v1,v8):

First, it checks the exit candidate v8 against the nearest previous entrance

candidate, i.e. the vertex v5. The call to VALIDATESUPERBUBBLE(v5,v8) re-

turns v3 as an alternative entrance candidate. The new candidate is then
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Subroutine 3.3 REPORTSUPERBUBBLE : Reports the superbubble ending at exit
(if any), including the nested ones.

1: function REPORTSUPERBUBBLE(start,exit)

2: if start=null or exit=null or ORD[start]≥ORD[exit] then
3: DELETETAIL(Candidates)
4: return
5: end if
6: s← PVSENTRANCECANDIDATE(exit)
7: found = false
8: while (ORD[s]≥ORD[start]) do
9: valid← VALIDATESUPERBUBBLE(s,exit)

10: if valid = s then
11: found = true
12: end if
13: if found or valid = AltEntrance[s] or valid = -1 then
14: break
15: end if
16: AltEntrance[s]← valid
17: s← valid
18: end while
19: DELETETAIL(Candidates)
20: if found then
21: REPORT(〈s,exit〉)
22: while TAIL(Candidates) is not s do
23: if EXIT(TAIL(Candidates)) then . Check for nested superbubbles

24: REPORTSUPERBUBBLE(NEXT(s),TAIL(Candidates))
25: else
26: DELETETAIL(Candidates)
27: end if
28: end while
29: end if
30: return
31: end function

checked and the superbubble 〈v3,v8〉 is reported. Additionally, two recursive

calls are made:

a) REPORTSUPERBUBBLE(v11,v7):

First, it validates 〈v5,v7〉 and reports it. Then, it makes a recursive call

– REPORTSUPERBUBBLE(v10,v10) which terminates without reporting

any superbubble.

57



CHAPTER 3. SUPERBUBBLES

b) REPORTSUPERBUBBLE(v11,v12):

It validates〈v11,v12〉 and reports it.

3. REPORTSUPERBUBBLE(v1,v3):

It validates 〈v1,v3〉 and reports it.

3.4 Validating a Superbubble

In this section, we describe the subroutine VALIDATESUPERBUBBLE. The ability

to validate a candidate superbubble depends on the following result related to the

Range Minimum Query (mentioned in Subsection 2.3.3) problem.

In order to check whether a superbubble candidate 〈s,t〉 is a superbubble or not,

we propose to utilise the range min/max query problem as follows:

• For a given graph G = (V,E) and for each vertex v ∈V with topological order

ORD[v], calculate the topological orders of the parent and the child of v that

are topologically furthest from v.

OutParent[ORD[v]]=min({ORD[u] | (u,v) ∈ E}),

OutChild[ORD[v]]=max({ORD[u] | (v,u) ∈ E}).

• For an integer array A and indices i and j we define RANGEMIN(A, i, j) and

RANGEMAX(A, i, j) to return the minimum and maximum values of A[i.. j],
respectively.

Then, for a given superbubble candidate 〈s,t〉, where s and t are an entrance

and an exit candidate respectively (satisfying Lemmas 3.1 and 3.2), if 〈s,t〉 is

a superbubble then the following two conditions are valid:

RANGEMIN(OutParent,ORD[s]+1,ORD[t]) = ORD[s],

RANGEMAX(OutChild,ORD[s],ORD[t]-1) = ORD[t].

For example, Figure 3.4 represents both OutParent and OutChild arrays computed

for the graph G in Figure 3.1. Furthermore, a candidate 〈v5,v8〉 is not a superbubble

as RANGEMIN(OutParent,ORD[v5]+1,ORD[v8])= 3 6= 6=ORD[v5].

It should be clear that after an O (n+m)-time pre-processing, validating a su-

perbubble requires O (1) time which is the cost for the range max/min query. The
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
v1 v2 v3 v11 v12 v5 v9 v6 v10 v7 v4 v8 v13 v15 v14

OutParent[ j] - 1 1 3 4 3 6 6 7 8 3 5 12 13 12
OutChild[ j] 3 3 11 5 12 8 9 10 10 12 12 15 15 15 -

Figure 3.4: OutParent and OutChild arrays for the graph in Figure 3.1.

subroutine VALIDATESUPERBUBBLE(startVertex, endVertex) is designed to re-

turn an appropriate entrance candidate for a superbubble ending at endVertex (if

any), as shown in the pseudo-code Subroutine 3.4.

Subroutine 3.4 VALIDATESUPERBUBBLE : Returns an appropriate entrance can-
didate for a superbubble ending at endVertex (if any).

1: function VALIDATESUPERBUBBLE(startVertex,endVertex)

2: start←ORD[startVertex]
3: end←ORD[endVertex]
4: outChild← RANGEMAX(OutChild,start,end−1)
5: outParent← RANGEMAX(OutParent,start+1,end)
6: if outChild 6= end then
7: return -1
8: end if
9: if outParent= start then

10: return startVertex
11: else if ENTRANCE(VERTEX(outParent)) then
12: return VERTEX(outParent)
13: else
14: return PvsEntrance[VERTEX(outParent)]
15: end if
16: end function

An important observation is that a subsequent call to VALIDATESUPERBUBBLE,

for a given entrance candidate, returns alternative entrance candidates in a strictly

non-decreasing topological order as proved by Lemma 3.5.

Lemma 3.5. Let t be the alternative entrance candidate returned by VALIDATE-

SUPERBUBBLE(s,e). Then for any exit candidate e′ such that ORD[s] <ORD[e′] <
ORD[e], the order of the alternative entrance candidate t′ returned by VALIDATESU-

PERBUBBLE(s,e′) will be greater than or equal to the order of t.
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Proof. Recall that the alternative entrance t returned by the subroutine VALI-

DATESUPERBUBBLE(s,e) is either a vertex with topological order outParent, or the

previous entrance of this vertex (given by PvsEntrance).

Since outParent = RANGEMIN(OutParent,ORD[s]+ 1,ORD[e]) and ORD[s] <
ORD[e′]<ORD[e], we have

outParent′ = RANGEMIN(OutParent,ORD[s]+1,ORD[e′])

implying that outParent≤ outParent′. Therefore, ORD[t]≤ORD[t′]. �

3.4.1 Validation and AltEntrance

In case the validation of the candidate pair (t0,e) fails, VALIDATESUPERBUBBLE(t0,e)

returns either “-1" or an alternative candidate t1 which might be an entrance of a

superbubble ending at e. This alternative candidate t1 is either a vertex u1, if u1 is

an entrance candidate, or the previous entrance candidate of u1 such that

ORD[u1]=OutParent[ORD[v0]]

= RANGEMIN(OutParent,ORD[t0]+1,ORD[e]),

where v0 is some vertex between t0 and e in the topological ordering.

Suppose t1 is also not a valid entrance of the superbubble ending at e. Then,

there must be a vertex v1 such that ORD[t1]<ORD[v1]<ORD[t0], with some parent

u2 such that ORD[u2]=OutParent[ORD[v1]]. Then, the alternative entrance is some

t2, which is either a vertex u2 or its previous entrance and thus ORD[t2]<ORD[t1].

A series of such failed validations produces a sequence t1,t2, ... of failed alternative

entrance candidates.

A notable observation here is that any entrance ti, for i ≥ 1, from such a sequence

is an invalid entrance not only for the superbubble ending at e but also for all

those ending at any other exit vertex e′ such that ORD[ti−1] < ORD[e′] < ORD[e]

and ti = VALIDATESUPERBUBBLE(ti−1,e′). This is the case because the vertex vi,

which causes the alternative entrance ti to fail, is such that ORD[ti]<ORD[vi]<
ORD[ti−1] for i ≥ 1. In other words, if ti failed due to some vi when tested with

e then vi will also be the reason for failure whenever ti is tested with any exit

candidate between ti−1 and e.
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This is where the array AltEntrance plays an important role: using AltEntrance to

store AltEntrance[ti−1]= ti for i ≥ 1 enables us to skip this sequence at a later stage

if ti is returned by the subroutine VALIDATESUPERBUBBLE(ti−1,e′).

3.5 Analysis of the Algorithm

In this section, we analyse the correctness, the running time, and the space require-

ment of the proposed algorithm SUPERBUBBLE.

3.5.1 Correctness and Time Complexity

For simplicity, in the following lemma we will slightly abuse the terminology and

refer to 〈s,t〉 as a superbubble if it satisfies the first three conditions given in

Definition 3.1, and as a minimal superbubble if it also satisfies the last condition in

the same definition.

Lemma 3.6. For a given exit candidate e, let s be the entrance candidate such that
superbubble 〈s,e〉 is reported by the subroutine VALIDATESUPERBUBBLE(s,e). Then
〈s,e〉 is a minimal superbubble.

Proof. By contradiction, let e′ be an exit candidate such that 〈s,e′〉 is also a super-

bubble and ORD[s]<ORD[e′]<ORD[e]. Then, either ORD[e]=ORD[e′]+1 or there

is at least one vertex v such that ORD[e′]<ORD[v]<ORD[e].

In the first case, ORD[e]=ORD[e′]+1 implies that e is the only child of e′ and e′

is the only parent of e, which, by Lemma 3.2 makes 〈e′,e〉 a superbubble.

In the second case also, where there is at least one vertex v such that ORD[e′]<
ORD[v]<ORD[e], we argue that 〈e′,e〉 must be a superbubble. Indeed, 〈e′,e〉 satis-

fies the following conditions:

1. Reachability: Since 〈s,e〉 is a superbubble, e is reachable from s. If 〈s,e′〉 is

also assumed to be a superbubble, any path from s to e must go through e′,
therefore e is reachable from e′.

2. Matching: The only vertices reachable from e′ without going through e are

those whose topological order is between ORD[e′] and ORD[e]. Indeed, since

〈s,e〉 and 〈s,e′〉 are superbubbles, all these vertices are reachable from s

through e′, and no vertices with topological orders greater than ORD[e] are
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reachable from e′ without going through e. Similarly, there are no edges

between vertices with topological orders less than ORD[e′] and those with

topological orders between ORD[e′] and ORD[e]. Therefore, the only vertices

from which e is reachable without going through e′ are those whose topological

orders are between ORD[e′] and ORD[e].

3. Acyclicity: Since G is acyclic and 〈e′,e〉 is its subgraph, it is also acyclic.

In both the cases, due to the fact that for each exit candidate the entrance

candidates are checked in reverse topological order, VALIDATESUPERBUBBLE would

have been called on 〈e′,e〉 first, and would have reported 〈e′,e〉 instead of 〈s,e〉.
Therefore, 〈s,e〉 is a minimal superbubble. �

Lemma 3.7. For the given entrance and exit candidates s and t, respectively, the
subroutine VALIDATESUPERBUBBLE reports 〈s,t〉 if and only if 〈s,t〉 is a superbub-
ble.

Proof. We prove the lemma by showing that if 〈s,t〉 is a superbubble then the

subroutine VALIDATESUPERBUBBLE reports it, and if VALIDATESUPERBUBBLE

reports 〈s,t〉 then 〈s,t〉 is a superbubble.

1. We start by showing that if 〈s,t〉 is a superbubble then it is reported by the

subroutine VALIDATESUPERBUBBLE. Indeed, by Lemma 3.4, all the vertices

with topological orderings between s and t belong to the superbubble 〈s,t〉.
Therefore, the minimum OutParent is s and the maximum OutChild is t and

thus VALIDATESUPERBUBBLE reports 〈s,t〉.

2. We next show that if the subroutine VALIDATESUPERBUBBLE reports 〈s,t〉
then 〈s,t〉 is a superbubble. Let start and end be two integers, such that

ORD[s] = start and ORD[t] = end. The graph G, as defined, has a single

source r and a single sink r′; this implies that any vertex v ∈V is reachable

from the source r and, at the same time, can reach the sink r′. This is also

true for s, t, and for any vertex v such that ORD[s]<ORD[v]<ORD[t].

First, we show that t is reachable from s. Recall that t is an exit candidate,

so it has a parent p with out-degree 1. Assume that t is not reachable from

s. Then, there must be a path from r t which does not involve s. This

implies that either OutParent[end] < start, or there exists a vertex v such
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that start < ORD[v] < end, OutParent[v] < start and there exists a path

r v t, which is a contradiction.

Similarly, we can show that every vertex v such that start < ORD[v] < end

satisfies the matching criterion of the superbubble.

The acyclicity criterion is guaranteed by the acyclicity of G and the mini-
mality is satisfied by the design of subroutine REPORTSUPERBUBBLE which

assigns each exit of a superbubble to the nearest entrance, and by Lemma 3.6.

�

Lemma 3.8. For a given exit candidate e, let t be the alternative entrance candi-
date returned by the subroutine VALIDATESUPERBUBBLE(s,e). Then any entrance
candidate between t and e cannot be a valid entrance for the superbubble ending at
e.

Proof. By contradiction, assume that s′ is an entrance candidate between t and

e such that 〈s′,e〉 is a superbubble. If s′ had been between s and e, it would

have already been reported, as SUPERBUBBLE checks entrance candidates in re-

verse topological order starting from e. Therefore, s′ is between t and s, such that

ORD[t]<ORD[s′]<ORD[s]<ORD[e].

Let outParent = RANGEMIN(OutParent,ORD[s]+1,ORD[e]). Then, the vertex

at outParent is between t and s′, otherwise VALIDATESUPERBUBBLE(s,e) would

have returned s′ (instead of t). Therefore, ORD[t]≤ outParent<ORD[s′].
Let outParent′ = RANGEMIN(OutParent,ORD[s′]+1,ORD[e]). Then outParent′ ≤

outParent. This implies that outParent′ ≤ outParent < ORD[s′]. However, for

〈s′,e〉 to be a valid superbubble, outParent′ should have been equal to ORD[s′].
Hence, the assumption is wrong and thus it is proved that there cannot be an en-

trance candidate between t and e, which is a valid entrance for the superbubble

ending at e. �

Lemma 3.9. For the given entrance and exit candidates s and e1, respectively, let
AltEntrance[s] be set to t1 which later gets reset to t2 (such that t2 6= t1) while
considering s with another exit candidate e2. Then, no exit candidate between s and
e2 can reset AltEntrance[s] to t1 again.

Proof. Let e3 be an exit candidate between s and e2 such that the call to the sub-

routine VALIDATESUPERBUBBLE(s,e3) returns t3. Then, by Lemma 3.5, ORD[t1]≤
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ORD[t2] ≤ ORD[t3]. Since t1 6= t2, we have ORD[t1] < ORD[t2] ≤ ORD[t3]. There-

fore, ORD[t1] < ORD[t3] and AltEntrance[s] cannot be reset to the same value t1

again. �

Theorem 3.1. The algorithm SUPERBUBBLE reports all superbubbles, and only
superbubbles, in graph G in decreasing topological order of their exit vertices in
O (n+m) time.

Proof. Consider an execution of SUPERBUBBLE. Let [〈s1,t1〉, · · · ,〈sk,tk〉] be the

list of successive superbubbles reported just after the execution of Line 21 of the

subroutine REPORTSUPERBUBBLE, where ORD[t1]>ORD[t2]> ·· · >ORD[tk].

1. First, we show that each 〈si,ti〉 reported by the algorithm in Line 21 is a

superbubble. This follows from Lemma 3.7.

2. Second, no superbubble is missed out by the algorithm as proved by the

following arguments. The subroutine REPORTSUPERBUBBLE is called for

each exit candidate in decreasing order. The entrance candidate for the

superbubble (if any) ending at exit will only be between start and exit,

where start is either the head of the the candidates list (when subroutine

REPORTSUPERBUBBLE is called from the algorithm SUPERBUBBLE) or the

next candidate of the entrance of an outer superbubble (when called through

a recursive call to identify a nested superbubble). A call to the subroutine

REPORTSUPERBUBBLE(start, exit) checks the possible entrance candidates

between start and exit, starting with the nearest previous entrance candi-

date (to exit). The subroutine VALIDATESUPERBUBBLE either successfully

validates an entrance candidate, or returns a “-1", or returns an alternative

entrance candidate. From Lemma 3.8, there cannot be any valid entrance

between this alternative entrance and exit. If this alternative entrance starts

a sequence of entrances already checked for some exit candidate previously

(as depicted by the array AltEntrance), then all entrances of that sequence will

be skipped, otherwise this alternative entrance will be tested. However, as

mentioned in Subsection 3.4.1, none of the entrance candidates in the skipped

sequence can be valid. Therefore, for each exit candidate, every potential en-

trance candidate is checked for validity, and those which are not considered

are not valid.
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3. Third, the running time of SUPERBUBBLE is O (n+m). Indeed, the running

time of the TOPOLOGICALSORT and computing the candidates list is O (n+m).

Furthermore, all list operations cost constant time each, and sum up to a

linear cost of O (n), as there are at most 2n candidates in the list. Finally,

each call to VALIDATESUPERBUBBLE costs O (1). The total number of times

VALIDATESUPERBUBBLE is called is O (n+m). This is because the subrou-

tine VALIDATESUPERBUBBLE is called once for each exit candidate from

REPORTSUPERBUBBLE, and the total number of such calls is bounded by O (n).

Additionally, it is called every time a new alternative entrance sequence is gen-

erated by the subroutine VALIDATESUPERBUBBLE. It follows from Lemma 3.9

that once an AltEntrance sequence is reset, it cannot be generated again by

subsequent calls to the subroutine VALIDATESUPERBUBBLE. This resetting

of AltEntrance for each entrance candidate (Line 16) thus enables avoiding re-

peated checks of the same sequences of entrance candidates. Resetting is done

every time an edge is considered for the first time between a vertex (in between

an entrance candidate startVertex and an exit candidate endVertex) and its

topologically furthest parent (whose order is less than that of startVertex).

Thus, the total number of times AltEntrance will be reset (for all the entrance

candidates) is bounded by O (m).

Therefore, the total running time for reporting all superbubbles in the graph

G is O (n+m).

�

3.5.2 Space Complexity

It is trivial to see that the overall space consumed by the algorithm is linear with

respect to the size of the graph. Moreover, the graph in not needed in memory after

the initialisation stage. In fact, the working memory requirement of the algorithm

is O (n) – the size of every auxiliary array and data structure used is n and the size

of the candidate list is ≤ 2n.

3.6 Impact

The theoretical impact of the proposed algorithm is the improvement in the bottle-

neck stage of the pipeline for reporting the superbubbles in a general directed graph,
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making the overall algorithm an optimal one. From a practical view-point, we noted

that no implementation of the previous state-of-the-art algorithm was available

and consequently we implemented the whole pipeline as a software tool (using the

proposed algorithm for Stage 3 and algorithm by Sung et al. for the stages 1, 2, and

4).

The software tool was picked up by the scientific community working on genome

assembly as soon as it was made available and is currently being used in the vg
(variation graph) tool-kit developed by Richard Durbin’s lab at the Wellcome Trust
Sanger Institute. Furthermore, the proposed algorithm spurred-on generalisations

of superbubbles – termed as Snarls and Ultrabubbles – for bidirected and biedged

graphs [PNGH17].
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4
ELASTIC-DEGENERATE STRINGS

Motivated by applications like intra-species genomic variation studies, in this chap-

ter, we extend the notion of gapped strings to elastic-degenerate strings. An elastic-

degenerate string can be seen as an ordered collection of solid (standard) strings

interleaved by elastic-degenerate symbols; each such symbol corresponds to a set of

two or more variable-length solid strings. In this chapter, we present an algorithm for

solving the pattern matching problem with a solid pattern and an elastic-degenerate

text running in O (N +αγmn) time, where m is the length of the pattern, n and

N are the length and total size of the elastic-degenerate text, respectively, α and

γ are parameters, respectively representing the maximum number of strings in

any elastic-degenerate symbol of the text and the maximum number of elastic-

degenerate symbols spanned by any occurrence of the pattern in the text. The space

used by the algorithm is linear in the size of the input for a constant number of

elastic-degenerate symbols in the text.

The chapter is organised as follows: we begin by giving the background of the

problem and discussing related work in the literature in Section 4.1. In Section 4.2,

we introduce the basic definitions and formalise the notions of elastic-degeneracy

that will be used throughout. We delineate the algorithm in Section 4.3 and present

its analysis in Section 4.4. The experimental results are described in Section 4.5.

Finally, the chapter concludes with Section 4.6 wherein we mention the impact this

proposed model has created.
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4.1 Background

In many applications like molecular biology (where sequences are considered as

strings over a fixed size alphabet Σ), if the specific nature of data is to be accommo-

dated, we are required to allow some positions in the sequence to contain, instead of

a single letter from Σ, a subset of Σ. Such degenerate (indeterminate) symbols can be

interpreted to mean that the exact letter at the given position is not known, but is

suspected to be one of the specified letters. For example, the string
[a
c
]
ac

[
b
c
]
a
[b
a
c

]
is a

degenerate string of length 6 over Σ= {a,b,c}; the positions 1, 4, and 6 are non-solid
positions because these can be occupied by any of the symbols from the specified set

e.g. either of the symbols – a or c – may occur at the first position.

In biological sequences, a position in one string may match with various symbols

in other strings. Pattern matching in degenerate strings is particularly relevant

in the context of coding biological sequences. Due to the degeneracy of the genetic

code, two dissimilar DNA sequences can be translated into identical protein se-

quences. Without taking this degeneracy into account, many associations between

biological entities can be overlooked. For example, the following six DNA codons

are all translated into the amino acid Leucine: TTA, TTG, CTT, CTC, CTA and CTG. This

example highlights the significance of solving problems relating to degeneracy in

strings. Please refer to Subsection 2.5.1 for a general introduction to the concepts of

translation, codons, genetic code etc.

A more restrictive variant of degenerate strings – which allows at a given position

a subset consisting of either a single letter or all the letters of Σ – was proposed

by Fischer and Paterson in their seminal work [FP74]. For example, ab3ac is an

instance of a string of length 5 where the third position carries a hole or don’t care
or wild card symbol (usually represented by 3 or ∗) which can match any letter

from the alphabet. This restrictive model has been called “partial words” or “strings

with wild cards/holes/don’t cares” in recent years. It has been considered for various

classical problems, other than the pattern matching problem, that involve structured

regularities in strings like covers, periods etc.; [BS12] presents a comprehensive

survey on partial words. However, this model is not as expressive as degenerate

strings when it comes to capturing the uncertainty in biological sequences.

The pattern matching problem in degenerate strings was first proposed by

Abrahamson as “generalised string matching” in 1987 [Abr87] along with an al-

gorithm which, however, was not efficient enough to be used in practice. Subse-
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quently, more practically-efficient algorithms were proposed in 1992 using the

bit-mapping approach (the so-called “Shift-Or” technique) [BYG92, WM92]). The

bit-mapping approach reduces a problem to bit operations (Shift, AND, OR etc.)

over bit-vectors and exploits the parallelism of those operations over bits in a

computer word. Some of the more efficient and practical algorithms for pattern

matching on degenerate strings developed over the last decade can be found in

[HSW08, IMR08, SW09, CIK+16b]. These are based on disparate techniques like the

Sunday variant [Sun90] of Boyer–Moore pattern-matching algorithm [BM77], Fast

Fourier Technique [FP74], Landau–Vishkin’s algorithm for approximate matches

[LV89]. Moreover, numerous studies comprising of algorithmic and combinatorial per-

spectives for solving a range of problems involving degenerate strings have enriched

the literature since then; see the recent woks presented in [CIK+17, BSBDW17] and

references therein for regularity related problems on degenerate strings. Further-

more, another variant of degenerate strings – weighted strings – which additionally

associate a probability of occurrence (weight) to each letter in some non-solid posi-

tion, have given rise to another line of research in the context of degeneracy. For

example, [BP18, KPR16, BKPR16] present the recent algorithmic advances in the

problems related to pattern matching, structured regularities, indexing etc. in the

weighted strings’ setting.

Moving on to another such representation for characterising uncertainty in

sequential data (strings), we have a gapped string (or compound pattern or composite
pattern). As mentioned in Chapter 1, a gapped string is an ordered collection of

standard strings (seeds) separated by variable-length gaps defined by an ordered

collection of intervals [CS04]. Following the representation used in [RIL+06], the

string X = ab∗2,4 aab is a gapped string with two seeds interspersed by one gap of

size in the range 2 to 4; the gap represents any string of length between the specified

range. Here, for Σ= {a,b}, any string of length 2, 3, or 4 will match the gap; each

string corresponding to the gap should be preceded by the string ab and followed

by the string aab to match the gapped string X . A gapped string corresponds to the

notion of a “structured motif” used in molecular biology. A single motif is simply

a conserved DNA (or RNA) sequence; a structured motif consists of two or more

single motifs separated by possibly variable length “spacers” (gaps). Extracting and

identifying specified structured motifs in DNA sequences is of particular interest

because they model the functional combinations of transcription factor binding sites

(TFBS) for co-regulated genes [EP02, CFOS04]. Transcription and TFBS have been
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described in Subsection 2.5.1.

The problem of pattern matching and discovery in the context of gapped strings

and its variants has been studied extensively using combinatorial approaches. In

[Pis14], Pissis presented a high performance computing tool for structured motif

extraction from the large datasets along with a review of other algorithms/tools

in detail; a survey of the algorithms for pattern matching with gaps has been

provided in [WQX14]. Recently, Alatabbi et al. presented a fast and simple algo-

rithm in [AAH+15] which is based on another approach suggested independently

in [MPVZ05] and [RIL+06] wherein the presented algorithm progresses in two

phases – finding the occurrences of seeds followed by attempting to stitch them

together considering the gap constraints. The weaknesses of some of the other no-

table approaches – using regular expression or bit parallelism – have been argued

in [BLGVW10].

Our Contribution. Here we propose a model to capture the macro-level uncer-

tainty in sequential data— elastic-degenerate strings— a hybrid of gapped strings

and degenerate strings. An elastic-degenerate string can be visualised as an ordered

collection of k > 1 strings interleaved by k−1 elastic-degenerate symbols. For in-

stance, aab

[
bb

aab

]
cab


abcab

cba

aca

bac is an example of an elastic-degenerate string

over Σ= {a,b,c}.

This generalisation of the concept of degeneracy is motivated by several data

mining problems [LBKP14] which can be reduced to the core task of discovering

occurrences of one or more patterns in a text that can best be described as an

ordered collection of strings interleaved by sets of variable-length strings. In the

specific case of genomics, a representation that encodes a set of related genomes with

variations in the reference genome itself (called the Population Reference Genome

in [MdOEMI16]), can be seen as an elastic-degenerate string.

Summing up, a gapped string, which specifies the constraint on only the length

of the gap between two consecutive seeds, differs from an elastic-degenerate string

because only the latter precisely defines the possible strings (of varying lengths) that

can exist between those seeds. However, this precise identification of ‘allowed’ strings

in a gap makes the pattern matching problem, in the context of elastic-degenerate

strings, algorithmically more challenging.
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4.2 Preliminaries

In this section, we give the terminology to build the concept of elastic-degeneracy

by presenting the following definitions and examples. For the purpose of clearly

distinguishing the text or the pattern string and, in turn, to maintain consistency

throughout the chapter, we will use capital letters to denote strings in this chapter.

Definition 4.1 (Seed: S). A seed S is a (possibly empty) string over Σ.

Definition 4.2 (Elastic-Degenerate Symbol: ξ). An elastic-degenerate symbol ξ, over

a given alphabet Σ, is a set of two or more distinct strings over Σ (i.e. ξ⊆ Σ∗ and

|ξ| > 1). An elastic-degenerate symbol ξ is denoted by


E1
E2
...

E|ξ|

, where each E i, 1≤ i ≤ |ξ|,

is a solid string.

Definition 4.3 (Elastic-Degenerate String: X̂ ). An elastic-degenerate string X̂ , over

a given alphabet Σ, is a sequence S1ξ1S2ξ2S3 . . .Sk−1ξk−1Sk, where Si, 1≤ i ≤ k, is

a seed and ξi, 1≤ i ≤ k−1 is an elastic-degenerate symbol.

An elastic-degenerate string X̂ can be visualised as follows:

X̂ =S1


E1,1
E1,2

...
E1,|ξ1|

S2


E2,1
E2,2

...
E2,|ξ2|

S3 . . .Sk−1


Ek−1,1
Ek−1,2

...
Ek−1,|ξk−1|

Sk.

Example 4.1. X̂ = abbc


ab

cab

acca

cca
[
aabcab

cba

]
bb is an elastic-degenerate string, where

we have the following:

• Three seeds: S1 = abbc, S2 = cca, and S3 = bb.

• Two elastic-degenerate symbols:

ξ1 =


ab

cab

acca

 and ξ2 =
[
aabcab

cba

]
.

• For ξ1: E1,1 = ab, E1,2 = cab, E1,3 = acca.

• For ξ2: E2,1 = aabcab, E2,2 = cba.
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Observe the use of X̂ to distinguish an elastic-degenerate string from a solid

string X or a degenerate string X̃ . Further, we will be using ξ to denote an elastic-

degenerate symbol and E i, j to denote a string from the set representing elastic-

degenerate symbol ξi in a string. In the following, we define three characteristics of

a given elastic-degenerate string X̂ with k seeds.

Definition 4.4 (Total Size: ‖X̂‖). The total size of X̂ , denoted by ‖X̂‖, is defined as

the sum of the total length of its seeds and the total length of all the strings in each

of its elastic-degenerate symbols:

‖X̂‖ =
k∑

i=1
|Si|+

k−1∑
i=1

|ξi |∑
j=1

|E i, j|

Definition 4.5 (Length: |X̂ |). The length of X̂ , denoted by |X̂ |, is defined as the sum

of the total length of its seeds and the total number of its elastic-degenerate symbols:

|X̂ | =
k∑

i=1
|Si|+k−1

Informally, the total number of positions in X̂ is its length considering an elastic-

degenerate symbol to occupy only one position. Intuitively, a position belonging to

some seed will be called a solid position and that of an elastic-degenerate symbol

will be called an elastic-degenerate position. In the running example, the total length

of the seeds is 9, hence, ‖X̂‖ = 9+ (2+3+4)+ (6+3) = 27, while |X̂ | = 9+2 = 11.

The first a occurs at (solid) position 1, followed by b at (solid) position 2 and so on.

ξ1and ξ2 are at (elastic-degenerate) positions 5 and 9, respectively and the last b

is at (solid) position 11. As in case of a solid string, a factor of X̂ (represented as

X̂ [i . . j], 1≤ i ≤ j ≤ n) is the sequence X̂ [i]X̂ [i+1]X̂ [i+2] . . X̂ [ j] (i.e. the contiguous

chunk from the position i to the position j).

Definition 4.6 (Possibility-Set: ℜ). The Possibility-set ℜ for the elastic-degenerate

string

X̂ = S1ξ1S2ξ2S3 . . .Sk−1ξk−1Sk

is defined as follows:

ℜ= {S1E1,r1 S2E2,r2 . . .Ek−1,rk−1 Sk} ∀r i,1≤ i ≤ k−1 such that 1≤ r i ≤ |ξi|.

Informally, the possibility-set ℜ of X̂ is the set of all possible solid strings ob-

tained from X̂ . A solid string can be obtained by replacing each of the elastic-

degenerate symbols with one of its constituent strings. In the running example, ℜ=
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{abbcabccaaabcabbb,abbcabccacbabb,abbccabccaaabcabbb,abbcabccacbabb,

abbcaccaccaaabcabbb,abbcaccaccacbabb}. Note that constituent strings replac-

ing the elastic-degenerate symbols have been underlined for clarity.

We are now in a position to define matching and occurrence in the context of

elastic-degenerate strings.

Definition 4.7 (Matching). An elastic-degenerate string X̂ with k seeds and a solid

string Y are said to match, denoted by X̂ ' Y , if, and only if, there exists a solid

string S = S1E1,r1 S2E2,r2 . . .Ek−1,rk−1 Sk, 1≤ r i ≤ |ξi|, obtained from X̂ (i.e. S ∈ℜ of

X̂ ), such that S =UY V , where U ,V ∈Σ∗, satisfying:



U = ε, V = ε if S1 6= ε, Sk 6= ε
E1,r1 6= ε, V = ε, U is either empty or a proper prefix of E1,r1 if S1 = ε, Sk 6= ε
Ek−1,rk−1 6= ε, U = ε, V is either empty or a proper suffix of Ek−1,rk−1 if S1 6= ε, Sk = ε
E1,r1 6= ε, U is either empty or a proper prefix of E1,r1 ,

Ek−1,rk−1 6= ε, V is either empty or a proper suffix of Ek−1,rk−1

if S1 = ε, Sk = ε.

Informally, we say that X̂ and Y match such that Y starts at the first position

of X̂ if the position is solid or as a suffix of one of its non-empty strings if it is

elastic-degenerate; and Y ends at the last position of X̂ if the position is solid or as

a prefix of one of its non-empty strings if it is elastic-degenerate.

Example 4.2. Consider X̂ as given in Example 4.1. For string Y = abbcabccacbabb

we have that X̂ 'Y , whereas for string Z = abbccccca, X̂ 6' Z

Definition 4.8 (Occurrence). In an elastic-degenerate string (text) T̂, a solid string

(pattern) P is said to have an occurrence starting and ending at positions i and

j respectively, if P ' T̂[i . . j]. An occurrence is represented as the pair of starting

position i (head) and ending position j (tail).

For consistency with the intuitive meaning of an occurrence, we say that P occurs

at the position of some elastic-degenerate symbol (say ξi) of T̂ if it is a factor of any

of the constituent strings of ξi (i.e. the starting position and the ending position of

that occurrence are the same).

Example 4.3. Consider a pattern P = cabbcb and a text T̂ as follows:
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aacabbcbbc


a

cab

acca

bb


c

acabbcbb

cba

bacabbc


b

cabb

bbc

aacabb

cbc.

All the occurrences of P in T̂ are shown below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

a a c a b b c b b c


a

aab

acca

 b b


c

acabbcbb

cba

 b a c a b b c



b

cabb

bbc

aacabb


c b c

Occurrence: (3,8) (10,14) (10,15) (11,14) (11,15) (14,14) (17,22) (22,24)

ξ1: a ξ1: a ξ1: acca ξ1: acca ξ2: acabbcbb ξ3: b ξ3: cabb

Strings chosen: -

ξ2: cba ξ2: c ξ2: cba ξ2: c or ξ3: bbc or ξ3: aacabb

Note that more than one occurrence of P can start at the same starting position

but their ending positions are different: for instance, (11,14) and (11,15) in Exam-

ple 4.3. Further note that different strings in the same elastic-degenerate symbols

can lead to the same occurrence: for instance, the same pair of head and tail is

obtained for occurrences (17,22) and (22,24) in Example 4.3.

Example 4.4. Here, we illustrate the case, where an elastic-degenerate string has
the empty string as a seed. The pattern P = babbcb has an occurrence at (2,4) in the
text T̂ given below:

T̂ = ab

[
bcab

abb

]
ab

cbb

abc

cca
[
bb

cb

]
ca.
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Here, we formally define the problem to extend the classical pattern matching

problem in the context of elastic-degenerate strings.

PATTERN MATCHING IN ELASTIC-DEGENERATE TEXTS

Input: An elastic-degenerate text T̂ = S1ξ1S2 . . .ξk−1Sk of length n and total size

N, a pattern P of length m < N.

Output: All the occurrences of P in T̂.

4.3 Our Algorithm

By definition, all the occurrences of the pattern P in the text T̂ fall under one of the

following cases:

1. P entirely lies in some seed.

2. P entirely lies in some string of an elastic-degenerate symbol.

3. P spans across one or more elastic-degenerate symbols. This can further be

divided into:

a) P starts in some seed.

b) P starts in some string of an elastic-degenerate symbol.

For instance, consider Example 4.3: the occurrences (3,8) and (14,14) fall under

Case 1 and Case 2, respectively; (10,14), (10,15), and (17,22) fall under Case 3(a);

(11,14), (11,15), and (22,24) fall under Case 3(b).

Note that a straightforward solution to this problem would be to find the pattern

occurrences in the possibility-set ℜ of T̂ using the KMP algorithm (see subsection

2.2.1); the running time would be exponential in the number of elastic-degenerate

symbols. In this section, we present an efficient algorithm that makes use of the

KMP algorithm and the suffix tree data structure. Clearly, the KMP algorithm can

easily report the occurrences corresponding to Case 1 and Case 2. Case 3 requires

some additional processing and data structures. Our algorithm works in two stages,

outlined below.

Stage 1: Pre-processing

Pre-process the pattern P to compute its failure function as required by the KMP

algorithm. In addition, create the generalised suffix tree (see Subsection 2.3.1) SS for
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the set of strings {P,S1,S2, . . . ,Sk} corresponding to all the seeds of T̂, as well as the

generalised suffix tree Sξ for the set of strings {P}∪ξ1∪ξ2∪ . . .∪ξk−1 corresponding

to all the strings in each of the elastic-degenerate symbols of T̂. Furthermore, pre-

process these two suffix trees so as to answer LCP (longest common prefix, explained

in Section 2.3) queries in constant time.

Stage 2: Search

Start searching for the pattern P in the text T̂ using the KMP algorithm, comparing

the symbols and using the failure function to shift the pattern on a mismatch.

The starting position of an occurrence being tested may be either solid or elastic-

degenerate; we call the two types of occurrences as Type 1 and Type 2, respectively.

We consider the two types separately as follows:

Type 1: Solid starting position

Consider a situation where an occurrence starting from a position (say pos) that lies

in some seed Si is being tested. Proceed normally comparing the corresponding sym-

bols of P and Si and shifting the pattern using the failure function on a mismatch.

As soon as the elastic-degenerate symbol ξi is encountered (suppose corresponding

position in the pattern is p), abort the KMP algorithm (for this test). Check each of

the strings of ξi (i.e. E i, j) for whether or not it occurs in the pattern at position p

using LCP queries on Sξ, and tick (mark) the tails of the found occurrences. This

can be realised by maintaining a list of (marked/ticked) positions which we denote

by Ti.

Next, the subroutine EXTEND (given formally as Subroutine 4.1) is executed. It

tries to extend each ticked position of Ti by testing whether Si+1 occurs adjacent to

it (using LCP queries on SS). For each such found occurrence of Si+1, occurrences

of strings of ξi+1 are checked using the suffix tree Sξ and their tails are ticked in

Ti+1. The procedure will then be repeated for Ti+1 and this continues recursively

until there is no tail marked in some call. This subroutine also keeps a check on

whether P is exhausted in order to report its corresponding occurrence. It is to be

noted that an occurrence of P is implied if the length returned by the LCP query

between the pattern starting next to some ticked-tail t and either of the following

hits the boundary (end) of the pattern:

• some seed Si
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• any string E i, j of some elastic-degenerate symbol ξi.

Once the subroutine ends (reporting all the occurrences of P starting from pos,

if any), the failure function corresponding to the position where the KMP algorithm

was aborted (i.e. p) is used to shift the pattern, and the KMP algorithm resumes.

Figure 4.1 and Table 4.1 abstractly elucidates the description given above.

Subroutine 4.1 EXTEND : Extends ticked tails in a given Ti and reports the occur-
rences found, if any.

1: function EXTEND(Ti)

2: isNonEmpty← false . A flag

3: for all t ∈ Ti do
4: `s ←|LCP(P[t+1 . .m],Si+1[1 . . |Si+1|])|
5: if (`s +t)= m then . Pattern ends

6: Report the occurrence
7: else if `s = |Si+1| then . Si+1 occurs here

8: e← t+|Si+1|;
9: for all E i+1, j ∈ ξi+1 do

10: `e ←|LCP(P[e+1 . .m],E i+1, j[1 . . |E i+1, j|])|
11: if (`e +e)= m then . Pattern ends

12: Report the occurrence (if not reported already)
13: else if `e = |E i+1, j| then . E i+1, j occurs here

14: Mark e+|E i+1, j| in Ti+1
15: isNonEmpty← true
16: end if
17: end for
18: end if
19: end for
20: if isNonEmpty then
21: EXTEND(Ti+1);
22: end if
23: end function

Type 2: Elastic-Degenerate starting position

Consider a situation where the starting position of an occurrence to be tested is an

elastic-degenerate symbol ξi. This case can be processed in a similar fashion as the

one described for Type 1, with the only difference being the manner in which tails

are ticked initially.
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pos

T̂

Si ξi Si+1 ξi+1 Si+2 ξi+2 Si+3

E i,|ξi | E i+1,|ξi+1| E i+2,|ξi+2|

E i,1 E i+1,1 E i+2,1

E i,r1

E i,r2

E i+1, j1

E i+1, j2

E i+1, j3

E i+2,p1

E i+2,p2

P

Ti

p

E i,r1

e1

X
E i,r2

e′1

X

Ti+1

Si+1 E i+1, j1

e2

X

Si+1 E i+1, j2

e′2

X
E i+1, j3

e′′2

X

Ti+2

Si+2
X

Si+2 E i+2,p1

e3

X

X

Ti+3
Prefix(Si+3)

pattern ends

Figure 4.1: An illustration of how the algorithm works for Type 1 occurrences.
Strings in elastic-degenerate symbols are shown as zigzag, while solid lines depict
the seeds. The grey area represents the initial (solid) match. Symbol X denotes that
this path could not be extended further while the symbol X represents a ticked tail.

Begin by applying the KMP algorithm for each E i, j to achieve two purposes:

finding the occurrences of P in E i, j and ticking the last positions of suffixes of

E i, j that appear as prefixes of P. The ticked tails obtained in that way are then

extended by the subroutine EXTEND recursively and occurrences are reported. After

the subroutine EXTEND ends, the KMP algorithm resumes and the testing starts at

the beginning of the seed Si+1.
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Initial

p:

E i,r1 next to p Tick e1

E i,r2 next to p Tick e′1
Ti = [e1, e′1]

Iteration 1

e1: Si+1 next to e1

E i, j1 follows this oc-
currence

Tick e2

e′1: Si+1 next to e′1
E i+1, j2 follows this
occurrence

Tick e′2

E i+1, j3 follows this
occurrence

Tick e′′2

Ti+1 = [e2, e′2, e′′2]

Iteration 2

e2: Si+2 next to e2

No string from ξi+2
follows this occur-
rence

No Extension

e′2: Si+2 next to e′2
E i+2,p1 follows this
occurrence

Tick e3

e′′2: No Si+2 next to e′′2 No extension

Ti+2 = [e3]

Iteration 3

e3: Prefix of Si+3 next to e3

Pattern exhausted Report occurrence

Nothing to extend Exit the procedure

Table 4.1: Table representing the progress of Subroutine 4.1 for the abstraction
shown in Fig 4.1.
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4.4 Analysis of the Algorithm

In this section, we discuss the correctness of the algorithm and analyse its space

and time complexity.

4.4.1 Correctness

Consider an occurrence (i, j). If the occurrence falls under Case 1 (resp. Case 2)

then j = i+m−1 (resp. j = i) for some fixed i. Thus, the number of occurrences

falling under either Case 1 or Case 2 is bounded by O (n). On the other hand, for

occurrences under Case 3, let the parameter γ represent the maximum number of

elastic-degenerate symbols that any occurrence (i, j) may span. Note that γ captures

the possibility that the elastic-degenerate symbols contain empty strings. As there

can be maximum m prefixes going past an elastic-degenerate position, the number

of occurrences per starting position i are bounded by O (γm). Thus the total number

of distinct occurrences (i, j) is bounded by O (γmn).

The correctness of the presented algorithm is straightforward as every starting

position of the text is being tested for potential occurrences exhaustively. While the

occurrences corresponding to Case 1 and Case 3(a) are covered by Type 1, Type 2

investigates every occurrence associated with Case 2 and Case 3(b). Thus, all the

occurrences of P in T̂ are reported.

4.4.2 Space Complexity

The space required by both, the failure function and ticked tails list, is O (m). The

suffix tree SS uses O (m+
k∑

i=1
|Si|) space and the suffix tree Sξ uses O (m+

k−1∑
i=1

|ξi |∑
j=1

|E i, j|)

space. This leads to the total space required to be O (N), as
k∑

i=1
|Si|+

k−1∑
i=1

|ξi |∑
j=1

|E i, j| = N

and m < N.

4.4.3 Time Complexity

The time taken by the pre-processing stage is O (N) as the failure function can be

computed in O (m) time and construction of both the suffix trees (along with their

pre-processing required to answer LCP queries in constant time) can be done in

O (N) time.
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The search stage uses the KMP algorithm over each seed and each string of

every elastic-degenerate symbol in the text to report the occurrences for Case 1 and

Case 2, and to search the beginning of the occurrence for Case 3. Thus the time

consumed by the KMP algorithm is O (
k∑

i=1
|Si|+

k−1∑
i=1

|ξi |∑
j=1

|E i, j|)=O (N).

The subroutine EXTEND can be analysed as follows. Intuitively, for every ticked

position in the pattern (which can at most be m), an LCP query is used to find

whether the succeeding seed occurs at the ticked position or not. Such an occurrence

is then tried to be extended by another LCP query with each of the strings in

the following elastic-degenerate symbol. Let parameter α represent the maximum

number of strings in any elastic-degenerate symbol of the text. This extension step

for each ticked position will be carried out at most α times. More specifically, the

outer loop of the subroutine runs m times and the inner one takes O (α) time, as

each LCP query takes constant time. Thus, each recursive call requires O (mα) time.

The number of recursive calls depends on the number of elastic-degenerate symbols

spanned by the longest occurrence of any prefix of P starting at the position being

tested. In other words, if an occurrence of the longest prefix spans across i elastic-

degenerate symbols, there will be i recursive calls to the procedure. If a parameter

γ were to reflect the maximum such i in an occurrence of P then EXTEND could

be executed in O (αγm) time in total for each starting position. It would require

an additional check (at Line 20) whether i < γ before making a recursive call to

EXTEND. Note that γ is a user-defined parameter that is upper-bounded by k i.e.

the number of elastic-degenerate symbols. In practice, γ= cm for a small constant c
should make a more sensible choice.

Initial ticking of the tails in Type 1 needs O (α) time. For Type 2, initial ticking

is done by the KMP algorithm (already accounted for above). In the worst case,

EXTEND will be called from each of the n starting positions of the text, leading to

an overall time-complexity of the algorithm to be O (N +αγmn). In other words, the

algorithm takes O (N +αγmn) time to find and report O (γmn) number of possible

occurrences of the pattern.
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4.5 Experimental Results

A proof of concept implementation of the algorithm was developed (in C++). The

implementation is openly available on GitHubi, along with the synthetic data used

in the following experiments. The tool was compiled with g++ version 4.7.3 at

optimisation level 3 (-O3). The following experiments were conducted on a desktop

computer using one core of Intel® CoreTM i7-2600S CPU at 2.8GHz and 8GB of

RAM under 64-bit GNU/Linux

The experiments were set up to verify the accuracy and corroborate the asymp-

totic behaviour of the algorithm by studying its performance on synthetic data

similar to the datasets used in genomics. Data was generated using random uniform

distribution for an alphabet of size 4 (which is same as the alphabet size in genomic

data) – namely, A, C, G, T.

Practical details

Note that the current implementation of the algorithm uses the enhanced suffix
array (Subsection 2.3.2) for answering LCP queries in constant time (after linear

time pre-processing) instead of the suffix tree data structure; this is because of its

space-efficiency, although it is easier to explain the algorithm using a suffix tree.

In addition, ticked positions are being maintained as a boolean array (rather than

a list) so that the occurrences at a specific starting position can be reported in an

ordered fashion which makes the verification of results quicker. These practical

modifications do not influence the theoretical bounds in the complexity analysis.

4.5.1 Accuracy

To test the accuracy, our aim was to test whether or not our algorithm could report

all (and only) the positions of occurrences of the pattern P in the T̂. It was validated

using carefully designed data – a random text sequence of specific length was first

generated using 3 letters of the alphabet; a pattern of specified length containing

a single occurrence of the fourth letter was manually designed; the pattern was

inserted in the text sequence at several places, thus ensuring different types of

occurrences (entirely in one seed, entirely in one or more strings of some elastic-

ihttps://github.com/Ritu-Kundu/ElDeS
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Figure 4.2: Plot showing the running time vs the text-length n for various values of
m.

degenerate symbol, spanning across several elastic-degenerate symbols) and these

insertion-positions were recorded. The reported occurrences were then verified

against the recorded positions. In each of such runs, the algorithm successfully

passed the test, correctly reporting all the indices where the pattern occurred

(without missing any occurrence or reporting any extraneous occurrence).

4.5.2 Performance

To study performance, text sequences of exponentially varying lengths were consid-

ered. The number of degenerate symbols was set to 10% of the text length (n). The

length of a string within a symbol was upper-bounded by 10. The number of strings

within a symbol (α) was chosen randomly with an upper-bound of 10. Each text so

generated was used to find occurrences of randomly-generated patterns with varying

pattern lengths (m = 10,20,40). Ten such sets were repeated and the average of the

running-times was recorded. Figure 4.2 presents the graphs showing the average

time taken by the algorithm to run versus the length of the text n. Note that as m
increases, the running-time decreases for the same n. This is because of the reduced

number of occurrences as a result of the decreased probability of finding a random

pattern in a random text with an increase in pattern length.

4.6 Impact

Our proposed model – elastic-degenerate strings – for capturing the uncertainty

that arises when a single representation is used for a collection of similar textual

sequences, has successfully attracted the attention of researchers working in the
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field of Stringology. The interest of the research community can be gauged by a

spate of the publications that started emerging immediately after we introduced

this model. Several improved algorithms have been proposed since then, albeit after

modifying the definition of an occurrence. While our algorithm, presented in this

chapter, reports the starting and ending positions of an occurrence of the pattern,

all the subsequent algorithms report only the ending position of an occurrence.

Nevertheless, considerable improvement in the time-complexity of the solution

to the pattern matching problem in this setting has been achieved – Table 4.2

chronologically presents the algorithms that have been proposed in the short time-

span since its introduction to the time of writing this dissertation.

Table 4.2: Subsequent Algorithms on Elastic-Degenerate String Matching Problem

Variant Publication Time Complexity

Online Grossi et al. [GIL+17]
Algorithm 1 : O (nm2+N)
after O (mdm

w e) pre-
processing

w is computer word
length.

Algorithm 2 : O (Ndm
w e)

after O (mdm
w e) pre-

processing

With errors Bernardini et al. [BPPR17]
Algorithm 1 :
O ((k + 1)2mG + (k + 1)N)
with insertions / dele-
tions / substitutions

k is the number of
errors allowed.

Algorithm 2 :
O ((k+1)(mG+N))
with substitutions only

G is the num-
ber of all the
substrings consti-
tuting seeds and
elastic-degenerate
symbols.

Online Aoyama et al. [ANI+18] O (nm
√

m logm +N)

Multiple
Patterns
(Online)

Pissis and Retha [PR18] O (NdM
w e)-time with pre-

processing time O(M)
M is the total
length of the
patterns.

Online Cisłak et al. [CGH18] O (Ndm
w e)-time Practical improve-

ment of an order
of magnitude and
alphabet indepen-
dence.
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5
LONGEST UNBORDERED FACTOR ARRAY

A border u of a word w is a proper factor of w occurring both as a prefix and as a

suffix. The maximal unbordered factor of w is the longest factor of w which does not

have a border. Here, an O (n logn)-time (with high probability) or O (n logn log2 logn)-

time (deterministic) algorithm to compute the Longest Unbordered Factor Array of

w for general alphabets is presented, where n is the length of w. This array specifies

the length of the maximal unbordered factor starting at each position of w. This is a

major improvement on the running time of the previously best worst-case algorithm

working in O (n1.5) time for integer alphabets [Gawrychowski et al., 2015].

This chapter is organised as follows: in the first section, we summarise the

associated results in literature and present the previous state-of-the-art algorithm.

In Section 5.2, we present the preliminaries, a formal definition of the problem,

and some useful properties of unbordered words. We lay down the combinatorial

foundation of the algorithm in Section 5.3 and expound the algorithm in Section 5.4.

The analysis of algorithm has been explicated in Section 5.5. Lastly, in Section 5.6,

we provide an observation that can further accelerate the algorithm in practice.

5.1 Background

There are two central properties characterising repetitions in a word – period and

border – which play direct or indirect roles in several diverse applications ranging

over pattern matching, text compression, assembly of genomic sequences and so
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on (see [CHL07, CR02]). A period of a non-empty word w of length n is an integer

p, 1 ≤ p ≤ n, such that w[i] = w[i+ p], for all i, 1 ≤ i ≤ n− p. For instance, 3, 6, 7,

and 8 are periods of the word aabaabaa. On the other hand, a border u of w is a

(possibly empty) proper factor of w occurring both as a prefix and as a suffix of w.

For example, ε, a, aa, and aabaa are the borders of w = aabaabaa.

In fact, the notions of border and period are dual: the length of each border of

w is equal to the length of w minus the length of some period of w. For example,

aa is a border of the word aabaabaa; it corresponds to period 6 = |aabaabaa|− |aa|.
Consequently, the basic data structure of periodicity on words is the border array
which stores the length of the longest border for each prefix of w (border table/array

has been introduced in Section 2.1). The computation of the border array of w was

the fundamental concept behind the first linear-time pattern matching algorithm

– given a word w (pattern), find all its occurrences in a longer word y (text). The

border array of w is better known as the “failure function” introduced in [MJP70]

(see also [AHU87]). It is well-known that the border array of w can be computed

in O (n) time, where n is the length of w, by a variant of the Knuth-Morris-Pratt

algorithm [MJP70].

Another notable aspect of the inter-dependency of these dual notions is the

relationship between the length of the maximal unbordered factor of w and the

periodicity of w. A maximal unbordered factor is the longest factor of w which

does not have a border; its length is usually represented by µ(w), e.g. the maximal

unbordered factor is aabab and µ(w)= 5 for the word w = baabab. This dependency

has been a subject of interest in the literature for a long time, starting from the

1979 paper of Ehrenfeucht and Silberger [ES79] in which they raised the question –

at what length of w, expressed in terms of µ(w), is µ(w) maximal (i.e. equal to the

minimal period of the word as it is well-known that it cannot be longer than that).

This line of questioning, after being explored for more than three decades, culminated

in 2012 with the work by Holub and Nowotka [HN12] where an asymptotically

optimal upper bound (µ(w)≤ 3
7 n) was presented; a historic overview of the related

research can be found in [HN12].

Somewhat surprisingly, the symmetric computational problem—given a word w,

compute the longest factor of w that does not have a border—had not been studied

until very recently. In 2015, Kucherov et al. [KLS15] considered this arguably

natural problem and presented the first sub-quadratic-time solution. A naïve way

to solve this problem is to compute the border array starting at each position of w
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and locating the rightmost zero, which results in an algorithm with O (n2) worst-

case running time. On the other hand, the computation of the longest unbordered

factor can be done in linear time for the cases when µ(w) or its minimal period

is small (i.e. at most half the length of w) using the linear-time computation of

unbordered conjugates [DLL14]. However, as has been illustrated in [KLS15] and

[CK16], most of the words do not fall in this category owing to the fact that they have

large µ(w) and consequently large minimal period; more specifically, the expected

length of the maximal unbordered factor of a word w of length n over an alphabet of

size σ has been shown to be at least 0.99n (for sufficiently large n and σ> 4) and

n−O (σ−1), respectively. In [KLS15], an adaptation of the basic algorithm (that uses

the border array) has been provided with average-case running time O (n+n2/σ4),

where σ is the alphabet’s size; it has also been shown to work better, both in practice

and asymptotically, than another straightforward approach that employs the data

structures from [KRRW15, KRRW12] to query all relevant factors.

5.1.1 Previously Best Algorithm

The previously best worst-case algorithm to compute the maximal unbordered

factor of a given word takes O (n1.5) time. It was presented by Gawrychowski et

al. [GKSS15] and it works for integer alphabets (alphabets of polynomial size in

n). This algorithm works by categorising bordered factors into those having short
borders and those having long borders depending on a threshold, and exploiting

the facts that the short borders for each position are bounded by the threshold

and the factors with only long borders are small in number. More precisely, a

border is considered short or long depending on whether it is shorter or longer

than the threshold which is set to
p

n ; any unbordered substring of length ≤ 4
p

n
can be found naïvely by utilising the border table approach. For computing the

unbordered substrings of longer lengths, the algorithm conceptually divides w
into blocks of length

p
n and progresses in

p
n stages. In each stage (say k), the

algorithm finds a set of substrings (Fi
k) starting at some position i (which may result

in a substring longer than 4
p

n ) and ending in the kth block (interval [(k
p

n +1, (k+
1)
p

n ]). This scanning is followed by carefully selecting a candidate from Fi
k such

that the candidate does not have a short border and if it is unbordered, it is the

longest unbordered string in the set. In turn, the candidate is tested for whether it

is unbordered – if it is unbordered and longer than the longest unbordered factor

found so far, this candidate starts reflecting the longest unbordered factor so far.
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Gawrychowski et al. [GKSS15] also presented another algorithm that runs in

O (n logn) time on average and O (n2) time in the worst case. More recently, an O (n)-

time average-case algorithm was presented using the straightforward border table

approach and exploiting a refined bound on the expected length of the maximal

unbordered factor [CK16].

Our Contribution. In this chapter, we show how to efficiently answer the

Longest Unbordered Factor question using combinatorial insightsi. Specifically,

we present an algorithm that computes the Longest Unbordered Factor Array in

O (n logn) time with high probability. The algorithm can also be implemented de-

terministically in O (n logn log2 logn) time. This array specifies the length of the

maximal unbordered factor at each position in w. We thus improve on the running

time of the currently fastest algorithm, which reports only the maximal unbordered

factor of w and works only for integer alphabets, taking O (n1.5) time. Moreover, we

show that the analysis of our algorithm is tight: an infinite family of words that

exhibit the worst-case behaviour of the algorithm is provided.

5.2 Preliminaries

Throughout this chapter, we consider a non-empty word w of length n over a general
alphabet Σ; in this case, we replace each letter by its rank such that the resulting

word consists of integers in the range [1, . . . ,n]. This can be done in O (n logn) time

after sorting the letters of Σ. We begin by recollecting and expanding the premises

defining period and border in Chapter 2.

An integer p, 1 ≤ p ≤ n is a period of w if and only if w[i] = w[i + p] for all

i, 1 ≤ i ≤ n− p. The smallest period of w is called the minimum period (or the
period) of w. A word u is a border of w, if w = uv = v′u for some non-empty words v
and v′; note that u is both a proper prefix and a proper suffix of w. It should be clear

that if w has a border of length |w|− p then it has a period p. Thus, the minimum

period of w corresponds to the length of the longest border (or the border) of

w. Observe that the empty word ε is a border of any word w. If u is the shortest
border then u is the shortest non-empty border of w.

The word w is called bordered if it has a non-empty border, otherwise it is

unbordered. Equivalently, the minimum period p = |w| for an unbordered word w.

iThe corresponding software-tool is available on GitHub at https://github.com/Ritu-Kundu/luf.
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Note that every bordered word w has a shortest border u (u 6= w and u 6= ε) such that

w = uvu, where u is unbordered. By µ(w) we denote the maximum length among all

the unbordered factors of w.

The LONGEST UNBORDERED FACTOR ARRAY problem is defined as follows.

LONGEST UNBORDERED FACTOR ARRAY

Input: A word w of length n.

Output: An array LUF[1 . .n] such that LUF[i] is the length of the longest unbor-

dered factor starting at position i in w, for all 1≤ i ≤ n.

Example 5.1. Consider w = aabbabaabbaababbabab. The longest unbordered factor
array is as follows. (Observe that w is unbordered thus µ(w)= |w| = 20.)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

LUF[i] 20 3 12 9 12 3 14 3 11 3 10 5 2 3 5 2 2 2 2 1

5.2.1 Useful Properties of Unbordered Words.

Recall that a word u is a border of a word w if and only if u is both a proper prefix

and a suffix of w. A border of a border of w is also a border of w. A word w is

unbordered if and only if it has no non-empty border; equivalently ε is the only

border of w. The following properties related to unbordered words form the basis of

our algorithm and were presented and proved in [Duv82].

Proposition 5.1 ([Duv82]). Let w be a bordered word and u be the shortest non-
empty border of w. The following propositions hold:

1. u is an unbordered word;

2. u is the unique unbordered prefix and suffix of w;

3. w has the form w = uvu.

Proposition 5.2 ([Duv82]). For any word w, there exists a unique sequence 〈u1, · · · ,uk〉
of unbordered prefixes of w such that w = uk · · ·u1. Furthermore, the following prop-
erties hold:

1. u1 is the shortest border of w;
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2. uk is the longest unbordered prefix of w;

3. for all i, 1≤ i ≤ k, ui is an unbordered prefix of uk.

The computation of the unique sequence described in Proposition 5.2 provides a

unique unbordered-decomposition of a word. For instance, for w = baababbabab,

the unique unbordered-decomposition of w is baa ·ba ·b ·ba ·ba ·b.

5.3 Computational Tools

In what follows, we introduce a data structure and present some combinatorial

properties that will be used by our algorithm as computational tools.

5.3.1 Longest Successor Factor (Length and Reference)
Arrays

The longest successor factor of w (denoted by lsf ) starting at position i, is the longest

factor of w that occurs at i and has at least one other occurrence in the suffix

w[i+1 . .n]. The longest successor factor array (LSF`) gives for each position i in

w, the length of the longest factor starting both at position i and at another position

j > i. Formally, the longest successor factor array (LSF`) is defined as follows.

LSF`[i]=
{

0 if i = n,

max{k | w[i . . i+k−1]= w[ j . . j+k−1}, for i < j ≤ n.

Additionally, we define the LSF-Reference Array, denoted by LSFr. This array

specifies, for each position i of w, the reference of the longest successor factor at i. The

reference of i is defined as the position j of the last occurrence of w[i . . i+LSF`[i]−1]

in w; we say i refers to j. Formally, LSF-Reference Array (LSFr) is defined as follows.

LSFr[i]=
{

nil if LSF`[i]= 0,

max{ j | w[ j . . j+LSF`[i]−1]= w[i . . i+LSF`[i]−1]} for i < j ≤ n.

Computation:

Note that the longest successor factor array is a mirror image of the well-studied

longest previous factor array which can be computed in O (n) time for integer alpha-

bets [CI08, CIK+10, CII+13]. Moreover, in [CI08], an additional array that keeps a

position of some previous occurrence of the longest previous factor was presented;
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such a position may not be the leftmost one. Arrays LSF` can be computed using

simple modifications (pertaining to the symmetry between the longest previous

and successor factors) of this algorithm within O (n) time for integer alphabets. The

modified algorithm also computes a position j > i of each factor w[i . . i+|LSF`[i]|−1],

where 1≤ i ≤ n. Each such factor corresponds to the lowest common ancestor of the

two nodes in the suffix tree of w representing the suffixes i and j, which can be

identified in constant time (see Subsection 2.3.1). A linear-time pre-processing of

the suffix tree allows the computation of the rightmost position of each such factor

in constant time, thus yielding the array LSFr .

Example 5.2. Let w = aabbabaabbaababbabab. The associated arrays are as follows.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

LSF`[i] 5 6 5 4 3 4 3 4 3 2 1 4 3 2 1 3 2 1 0 0
LSFr[i] 7 14 15 16 17 10 11 14 15 18 19 17 18 19 20 18 19 20 nil nil

Remark 5.1. For brevity, we will use lsf and luf to represent the longest successor
factor and the longest unbordered factor, respectively.

5.3.2 Combinatorial Tools

The core of our algorithm exploits the unique unbordered-decomposition of all suf-

fixes of w in order to compute the length of the longest unbordered prefix of each such

suffix. Let the unbordered-decomposition of w[i . .n] be uk · · ·u1 as in Proposition 5.2.

Then LUF[i] = |uk|. In order to compute the unbordered-decomposition for all the

suffixes efficiently, the algorithm uses the repetitive structure of w characterised by

the longest successor factor arrays.

Basis of the algorithm. Abstractly, it is easy to observe that for a given posi-

tion, if the length of the longest successor factor is zero (no factor starting at this

position repeats afterwards) then the suffix starting at that position is necessar-

ily unbordered. On the other hand, if the length of the longest successor factor is

smaller than the length of the unbordered factor at the reference (the position of

the last occurrence of the longest successor factor) then the ending positions of the

longest unbordered factors at this position and that at its reference will coincide.
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The remaining case is not straightforward and its handling accounts for the bulk of

the algorithm. The following lemmas formalise the essence of the algorithm.

Lemma 5.1. If LSF`[i]= 0 then LUF[i]= n− i+1, for 1≤ i ≤ n.

Proof. The statement implies that suffix w[i . .n] is unbordered. Assume the con-

trary, that w[i . .n] is bordered, and let β> 0 be the length of its longest border. Then

w[i . . i+β−1]= w[n−β+1 . .n]. Hence LSF`[i]≥β which is a contradiction. �

Lemma 5.2. If LSFr[i]= j and LSF`[i]< LUF[ j] then, for 1≤ i ≤ n,

LUF[i]= j+LUF[ j]− i

Proof. Let k = j + LUF[ j]− 1, u = w[ j . .k] and v = w[i . . i + LSF`[i]− 1]; refer to

Figure 5.1. We first show that the factor w[i . .k] is unbordered. On the contrary,

assume that w[i . .k] is bordered and let β be the length of one of its borders (β<
LSF`[i] as LSFr[i] = j). This implies that w[i . . i +β− 1] = w[k −β+ 1 . .k]. Since

w[ j . . j+LSF`[i]−1] = v, we get w[ j . . j+β−1] = w[k−β+1 . .k] (i.e. u is bordered)

which is a contradiction. Moreover, w[k+1 . .n] can be factorised into prefixes of u
(by definition of LUF); every such prefix is also a proper prefix of v which will make

every factor w[i . .k′], k < k′ ≤ n to be bordered. Therefore, w[i . .k] is the longest

unbordered factor at i. �

i j k

v v
u

LSF`[i]= |v|
LSFr[i]= j

LUF[ j]= |u|

Figure 5.1: Illustration of the case when i refers to j such that v is the lsf at i, u is
the luf at j and |v| < |u|.

Now, we introduce the notion of the hook that aids in finding the unbordered-

decomposition of suffixes w[i . .n] for the remaining case (i.e. LSF`[i]≥ LUF[LSFr[i]]).

Definition 5.1 (Hook). The hook of a position j given a length ` > 0, denoted by

H `
j , is the smallest position q such that the non-empty factor w[q . . j−1] can be
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decomposed into unbordered prefixes of w[ j . . j+`−1]. Formally, q is H `
j if q is the

smallest position such that

w[q . . j−1]= ur · ur−1 · . . . · u2 · u1

where each ui, 1≤ i ≤ r, is an unbordered prefix of w[ j . . j+`−1].

The following observation provides a greedy construction of this decomposition.

Observation 5.1. The decomposition of a word v into unbordered prefixes of another
word u is unique. Such a decomposition can be constructed by iteratively trimming
the shortest prefix of u which occurs as a suffix of the decomposed word.

In other words, H `
j gives the position such that the factor w[H `

j . . j−1] is the

longest non-empty suffix of w[1 . . j−1] that can be factorised from right to left into

the shortest prefixes of u (the factor of length ` starting at j). The factorisation is

done by finding the shortest prefix of u ending at j−1 (say u1), then the shortest

prefix of u preceding u1 (say u2), and so on. If either `= 0 or no prefix of u matches

a proper suffix of w[1 . . j−1], then H `
j = j.

Moreover, the decomposability into unbordered prefixes of u is hereditary in a

certain sense:

Observation 5.2. If a word v can be decomposed into unbordered prefixes of u, then
every prefix of v also admits such a decomposition. Formally, if v = ur ·ur−1 · . . ·u2 ·u1

such that each ui, r ≥ i ≥ 1 is an unbordered prefix of u then any prefix v[1 . .k] can
be uniquely decomposed as

v[1 . .k]= ur ·ur−1 · . . ·ui−1 ·u′
p ·u′

p−1 · . . ·u′
1

where position k falls in ui and each u′
j, p ≥ j ≥ 1 is an unbordered prefix of u;

simply, the decomposition preceding ui will be retained by the prefix.

Example 5.3. Consider w = aabbabaabbaababbabab as in Example 5.1.

• H 3
10 = 3; for u = w[10 . .12] = baa, the factor w[3 . .9] = bbabaab is the longest

suffix of w[1 . .9] that can be decomposed from right to left into the shortest
prefixes of u — bbabaab= b ·ba ·baa ·b.

• H 2
15 = 15; no prefix of u = w[15 . .16] = bb matches a non-empty suffix of

w[1 . .14].
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The hook H `
j has its utility when j is a reference and `= LUF[ j] as given in the

following lemma.

Lemma 5.3. If H
LUF[ j]
j = q then the following holds for all i, 1 ≤ i < j, such that

LSFr[i]= j and LSF`[i]≥ LUF[ j]:

LUF[i]=
{

q− i if i < q;

LUF[ j] otherwise.

Proof. Let u = w[ j . . j +LUF[ j]−1] and v = w[i . . i +LSF`[i]−1]. Observe that u
occurs at position i and that v and w[q . .n] can be decomposed into unbordered

prefixes of u.

i q j

v v
uu

i q j

u1u2ur−1
· · ·

ur

LSF`[i]= |v|
LSFr[i]= j

LUF[ j]= |u|

H
|u|
j = q

Figure 5.2: The unbordered-decomposition of w[i . .n] consists of w[i . . q−1] as the
longest unbordered prefix; followed by a sequence of unbordered prefixes of u,
including u itself at position j. Therefore, LUF[i]= q− i.

Case a: i<q. We shall prove that w[i . . q−1] is the longest unbordered prefix of

w[i . .n]; see Figure 5.2.

First, observe that any longer factor w[i . .k], q ≤ k ≤ n has a suffix w[q . .k]

which is composed of unbordered prefixes of u (by Observation 5.2). This means that

w[i . .k] must be bordered (because u is its prefix).

To conclude, for a proof by contradiction suppose that w[i . . q−1] has a border

v′. Note that |v′| ≤ LSF`[i], so v′ is a prefix of v. Hence, it occurs both as a suffix of

w[1 . . q−1] and a prefix of w[ j . .n], which contradicts the greedy construction of

q =H |u|
j (Observation 5.1) and thus definition of q =H |u|

j .

Case b: i≥q. The decomposition of w[q . .n] into unbordered prefixes of u yields a

decomposition of w[i . .n] into unbordered prefixes of u, starting with u. This is the

unbordered-decomposition of w[i . .n] (see Proposition 5.2), which yields LUF[i] =
|u| = LUF[ j]. �
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5.4 Algorithm

The algorithm operates in two phases: a pre-processing phase followed by the main

computation phase.

The following is accomplished in the pre-processing phase: Firstly, compute

the longest successor factor array LSF` together with LSFr array. If LSFr[i] = j
then we say i refers to j and mark j in a boolean array (IsReference) as a reference.

Finally, initialise the array HOOK, that keeps the hook of each position, such that

HOOK[i]= i (as H 0
i = i).

In the main computation phase, the algorithm computes the length of the longest

unbordered factors for all positions in w. Moreover, it determines HOOK[ j]=H LUF[i]
j

for each potential reference, i.e., each position j such that j = LSFr[i] and LSF`[i]≥
LUF[ j] for some i < j; see Lemma 5.3.

Positions are processed from right to left (in decreasing order) so that if i refers

to j then LUF[ j] (and HOOK[ j], if necessary) has already been computed before i is

considered. For each position i, the value of LUF[i] is updated as follows:

1. If LSF`[i]= 0 then LUF[i]= n− i+1. Observe that i here is the first (from the

right end) occurrence of the letter w[i]. If i is also a reference (i.e. there is at

least one other occurrence of the letter w[i]), it is called a start reference.

2. Otherwise

a) If LSF`[i]< LUF[ j] then LUF[i]= j+LUF[ j]− i.

b) If LSF`[i]≥ LUF[ j] and i ≥HOOK[ j] then LUF[i]= LUF[ j].

c) If LSF`|[i]≥ LUF[ j] and i <HOOK[ j] then LUF[i]=HOOK[ j]− i.

Subsequently, if i is a potential reference then the algorithm also computes H LUF[i]
i

to update HOOK[i]. It is evident that the computational phase of the algorithm

fundamentally reduces to finding the hooks for a subset of references, i.e. the set of

potential references; for brevity, the term reference will mean a potential reference

hereafter. Algorithm 5.1 presents the pseudo-code of this high level description

of the algorithm; ISPOTENTIALREFERENCE(i) returns true if there exists i′ such

that LSFr[i′] = i and LSF`[i′] ≥ LUF[i]. The next subsection details the subroutine

FINDHOOK which constitutes the computational bulk of the algorithm.
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Algorithm 5.1 LONGESTUNBORDEREDFACTOR : Computes the Longest Unbor-
dered Factor Array of the given word w with length n.

1: function LONGESTUNBORDEREDFACTOR(w)

. Pre-processing:
2: LSF`,LSFr ← LONGESTSUCCESSORFACTOR(w)
3: for i ← 1 to n do
4: if LSF`[i] 6= 0 then
5: IsReference[LSFr[i]]← true
6: end if
7: end for
8: HOOK[1 . .n]← 1, · · · ,n

. Main:
9: for i ← n to 1 do

10: if LSF`[i]= 0 then . possibly a start reference

11: LUF[i]← n− i+1
12: else
13: j ← LSFr[i]
14: if LSF`[i]< LUF[ j] then
15: LUF[i]← j+LUF[ j]− i
16: else if i ≥HOOK[ j] then
17: LUF[i]← LUF[ j]
18: else
19: LUF[i]←HOOK[ j]− i
20: end if
21: if ISPOTENTIALREFERENCE(i) then
22: HOOK[i]← FINDHOOK(i)
23: end if
24: end if
25: end for
26: end function

5.4.1 Finding Hook (Subroutine FINDHOOK)

Main Idea When FINDHOOK is called on a reference j, it returns H
LUF[j]
j .

A simple greedy approach follows directly from Observation 5.1. Let u = w[ j . . j+
LUF[ j]−1] and H

LUF[j]
j = q; inspect Figure 5.3. Initially, the factor w[1 . . j−1] is

considered and the shortest suffix of w[1 . . j−1] which is a prefix of u is computed. Let

such prefix be ui1 ; observe that ui1 is unbordered. Then this suffix, w[i1 . . j−1]= ui1

is truncated or chopped (conceptually) from the considered factor w[1 . . j−1]; the next

factor considered will be w[1 . . j−|ui1 |−1]. Thus, the subroutine iteratively computes
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and truncates the shortest prefixes of u from the right-end of the considered factor,

shortening the length of the considered factor in each iteration and terminating

as soon as no prefix of u can be found. If the considered factor at termination is

w[1 . . q−1], position q is returned by the subroutine as H
LUF[j]
j . We make a call to

the subroutine FINDBETA(q, j) (detailed in Subsection 5.4.3) to find the length of

the shortest prefix of w[ j . . j+LUF[ j]−1] ending at q−1.

q j

uui1

i1

ui2

i2

uq

iki p

uikui p

i p−1

· · ·· · ·· · ·

Figure 5.3: A chain of consecutive shortest prefixes of u was computed at positions
i1, i2, · · · ik · · · i p and finally at position q. No prefix of u is a suffix of w[1 . . q−1]. The
hook value of position j is then set to q, meanwhile, the hook of ik is set to i p−1.

The factors considered by successive calls of FINDHOOK may overlap. Moreover,

the same chains of consecutive shortest prefixes may be computed several times

throughout the algorithm. To expedite the chain computation in the subsequent call

to FINDHOOK on another reference j′ ( j′ < j), we can recycle some of the computa-

tions done for j by shifting the value HOOK[·] of each such index (at which a prefix

was cut for j) leftwards (towards its final value). Consider the starting position ik

at which uik was cut (i.e. w[ik . . ik +|uik |−1]= uik is the shortest unbordered prefix

of u computed for the factor w[1 . . ik−1−1]). Let i p be the first position considered

after ik such that |ui p | > |uik | (i.e. every prefix cut between ik and i p +|ui p | is an

unbordered prefix of uik ). In other words, every factor uik+1, . . . ,ui p−1 is a prefix of

uik ; see Figure 5.3. Therefore, w[i p−1 . . ik −1] can be decomposed into prefixes of uk

i.e. the position i p−1 represents H
|uik |
ik

. Consequently, we set HOOK[ik] to i p−1 so

that the next time a prefix of length greater than or equal to |uk| is cut at ik, we do

not have to repeat truncating the prefixes uk+1, . . . ,up−1 and we may start directly

from position i p−1.

Implementation Updating the hook values for these indices can be efficiently

realised using a stack. Every starting position i p, at which ui p is cut, is pushed

onto the stack as a (length, position) pair (|ui p |, i p). Before pushing, every element
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(|uik |, ik) such that |ui p | > |uik | is popped and the hook value of index ik is updated

(HOOK[ik]=H
|uk|
ik

= i p−1 = i p +|ui p |).
A key observation to make here is that throughout the algorithm, each unbor-

dered prefix uik at position ik is computed just once by FINDHOOK. Nevertheless, a

longerii unbordered prefix u′
ik

which is the shortest prefix of some other unbordered

factor u′ 6= u may be computed at ik again when FINDHOOK is called on reference j′

(u′ is the longest unbordered factor at j′, where q < j′ < j). Example 5.4 illustrates

the functioning of the algorithm and FINDHOOK.

Example 5.4. In the running example i.e. Example 5.1 (w = aabbabaabbaababbabab),
the references (in the processing order) are – 20,19,18,17,16,15,14,11,10, and 7;
all of these are the potential references except – 7 (1 refers to it but LSF`[1]= 5 and
LUF[7]= 14) and 11 (7 refers to it but LSF`[7]= 3 and LUF[11]= 10). Only potential
references will call FINDHOOK; out of these, 20,17,16, and 15 will have empty stacks.
The hook and corresponding decomposition (and stacks; the left end is the bottom of
the stack) of the rest of the references have been shown below.

Reference i LUF[i] (luf ) HOOK[i] Decomposition/Stack

19 2 (ab) 17
w[17 . .18]= ab

(2,17)

18 2 (ba) 13
w[13 . .17]= ba ·b ·ba
(2,16), (1,15), (2,13)

14 3 (abb) 1
w[1 . .13]= a ·abb ·ab ·a ·abb ·a ·ab
(2,12), (1,11), (3,8), (1,7), (2,5), (3,2), (1,1)

10 3 (baa) 3
w[3 . .9]= b ·ba ·baa ·b
(1,9), (3,6), (2,4), (1,3)

FINDHOOK also updates the hook values of the positions in the stacks; the final
HOOK array is as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

HOOK[i] 1 1 3 3 5 3 7 1 9 3 11 11 13 1 15 13 17 13 17 20

iiIt will be easy to deduce after Lemma 5.5 that the length of the prefix cut (the next time) at the
same position will be at least twice the length of the current prefix cut at it.
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The positions in the stack of a reference can be partitioned based on the length

of the prefix cut at it for that reference (i.e. the length which was pushed onto the

stack paired with that position). This notion of partitioning – realised using twin
sets (defined below) – aids in establishing the relationship between the stacks of

various references. Let S j be the set of positions pushed onto the stack during a call

to FINDHOOK on reference j.

Definition 5.2 (Twin Set). A twin set of reference j for length `, denoted by T`j , is

the set of all positions i ∈S j which were pushed onto the stack paired with length `

in the call to FindHook on reference j i.e.

T`j = {i | (`, i) was pushed onto the stack of j}

Example 5.5. The positions in the stack of the reference 14 as shown in Example 5.4
can be partitioned in three twin sets corresponding to the prefixes (of the luf at 14

which is baa) cut at those positions – prefixes with lengths 1 (b), 2 (ba), and 3 (baa)
i.e. S14 =T1

14
⋃
T2

14
⋃
T3

14 where

T1
14 = {11,7,1}, T2

14 = {12,5} and T3
14 = {8,2}.

Note that a unique shortest unbordered prefix of w[ j . .LUF[ j]−1] occurs at each

i belonging to the same twin set. However, as and when a longer prefix at i is cut

(say `′) for another reference j′ < j, i will be added to T`
′

j′ .

Remark 5.2. S j =
LUF[ j]⋃
`=1

T`j .

Hereafter, a twin set will essentially imply a non-empty twin set. A pseudo-code

implementation of FINDHOOK is given in Subroutine 5.2; the array InvTwinSet main-

tains a pointer to the most recent twin set that each position is in; the subroutines

used by FINDHOOK have been spelled out in Table 5.1.

Subroutine Input Action

NEWSTACK - Creates a new stack.

FINDBETA Position q,

Reference j
Returns the length of the shortest prefix

of w[ j . . j+LUF[ j]−1] ending at q−1.

PUSH Stack st, Pair

(`, i)
Pushes the given pair of length and posi-

tion onto the stack.
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ISNOTEMPTY Stack st Returns true if the stack is not empty;

false otherwise.

TOP Stack st Returns the top element (here, a pair of

length and position) of the stack.

LENGTH Pair (`, i) Returns the length (i.e. `) from the given

pair of length and position.

POP Stack st Pops the pair of length and position at the

top of the stack and returns it.

Table 5.1: Subroutines used by FINDHOOK

Subroutine 5.2 FINDHOOK: Returns H
LUF[ j]
j and sets HOOK[i] ← H

β

i for each
(β, i) pushed onto the stack of j.

1: function FINDHOOK( j)

2: st← NEWSTACK( )
3: q ←HOOK[ j]
4: β← FINDBETA(q, j)
5: while (β 6= 0) do
6: HANDLEPOPPING(st, j, q,β)
7: PUSH(st, (β, q−β))
8: q ←HOOK[q−β]
9: β← FINDBETA(q, j)

10: end while
11: HANDLEPOPPING(st, j, q,LUF[ j]+1)
12: return q . returns H

LUF[ j]
j

13: end function

14: function HANDLEPOPPING(st, j, q,β)

15: while ISNOTEMPTY(st) and LENGTH(TOP(st))<β do
16: (length, pos)← POP(st)
17: HOOK[pos]← q . q =H

length
pos

18: InvTwinSet[pos]←T
length
j

19: end while
20: end function
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5.4.2 Forest of Stacks

In this subsection, we establish the relationships amongst the stacks and twin sets

of various references which are conducive to the analysis of the algorithm as well as

to finding the length of the shortest prefix of the luf of a reference ending at a given

position (computed by the subroutine FINDBETA). In doing so, we will make use of

the following observation.

Observation 5.3. w[i . .n], ∀i ∈S j admits a unique decomposition into unbordered
prefixes of w[ j . . j+LUF[ j]−1].

Lemma 5.4. If j′ is a reference such that j′ ∈S j, then H
LUF[ j′]
j′ ≥H

LUF[ j]
j .

Proof. Let u = w[ j . . j+LUF[ j]−1] and u′ = w[ j′ . . j′+LUF[ j′]−1]. Since j′ ∈S j, the

suffix w[ j′ . .n] can be decomposed into unbordered prefixes of u (by Observation 5.3);

in particular, any prefix of u′ can be decomposed into unbordered prefixes of u (by

Observation 5.2). Consequently, any decomposition into unbordered prefixes of u′

yields a decomposition into unbordered prefixes of u. In particular, w[H LUF[ j′]
j′ . .n]

admits such a decomposition, which implies H
LUF[ j]
j ≤H

LUF[ j′]
j′ . �

We observe that, throughout the algorithm, the stacks’ creation follows a laminar

structure. In the following, we present and prove three Lemmas (5.5, 5.6, and 5.7)

which allow us to visualise the stacks of the references as a forest. If the stack

S j is the most recent stack containing a reference j′, we say that j is the parent
of j′. More formally, the parent of j′ is defined as min{ j | j′ ∈ S j}. If a reference j
does not belong to any stack (i.e. has no parent), we will call it a base reference.

Consequently, each tree in the forest is related to a base reference j such that the

positions in S j are partitioned into the corresponding twin sets T`j at the root. In

general, the stack of a reference j′′ whose parent is j′ (with its stack at level l)
appears at level l+1 (appropriately partitioned into twin sets). See Example 5.6 for

an illustration.

Example 5.6. Consider a new word w = (aabaabbaabaabbb)2 (different from the
running example). The associated arrays are as follows.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
w[i] a a b a a b b a a b a a b b b a a b a a b b a a b a a b b b

LUF[i] 15 14 3 12 11 7 3 8 7 3 5 4 15 7 3 15 14 3 12 11 7 3 8 7 3 5 4 1 1 1

LSF`[i] 15 14 13 12 11 10 9 8 7 6 5 4 3 9 8 7 6 5 4 3 2 4 3 2 1 1 0 2 1 0
LSFr[i] 16 17 18 19 20 21 22 23 24 25 26 27 28 21 22 23 24 25 26 27 29 25 26 27 0 27 30 29 30 0
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Set of the references: {30,29,28,27,26,25,24,23,22,21,20,19,18,17,16}

Set of the potential references: {30,29,28,27,26,25,24,23,22,21,20,19,18,17,16}

Set of the base references: {30,27,25}

The trees of stacks corresponding to the base references have been shown in Figures
5.4 and 5.5.

(a)

HOOK[30]= 28
LUF[30]= 1

(b)

T1
30

{29,28}

30

(b)

HOOK[25]= 3
LUF[25]= 3

(baa)

T1
25 T3

25

{21,14,13,6} {22,18,15,10,7,3}

25

HOOK[21]= 6
LUF[21]= 7

(bbaabaa)

T7
21

{14,6}

21

FIGURE 5.4. Figure illustrating the trees of stacks (partitioned into twin
sets) corresponding to the base references 30 (Fig (a)) and 25 (Fig (b)).
Only one reference pushes positions from its twin set onto its stack
(shown in bold and is underlined). Note that the base reference 30 is
also a start reference corresponding to the letter b.
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Lemma 5.5. If j and j′ are two references such that j is the parent of j′ and j′ ∈T`j
for some `< LUF[ j], then the following hold:

1. S j′ ⊂T`j ;

2. For each i ∈S j′ there exists a k which was added to T`
′

j , with `′ > `, such that
the pair (k+`′− i, i) is pushed onto the stack of j′.

q j

u

z

j′pki

vv′v
· · ·· · ·· · ·

Figure 5.6: The pair (|z|, i) is the first to be pushed onto the stack of j′. The factor z
is unbordered, has v as a proper prefix and some v′ as a proper suffix, where both v
and v′ are unbordered prefixes of u such that |v| = `< |v′|.

Proof. Let u = w[ j . . j+LUF[ j]−1], u′ = w[ j′ . . j′+LUF[ j′]−1], and p be the value

of HOOK[ j′] prior to the execution of FINDHOOK( j′). Since j′ ∈T`j , the earlier call

FINDHOOK( j) has set HOOK[ j′]=H `
j′ . As j is the parent of j′, no further call has

updated HOOK[ j′]. Thus, we conclude that p =H `
j′ .

Consequently, the first pair pushed onto the stack of j′ (cf. Subroutine 5.2) is

(|z|, i), where z = w[i . . p−1] is the shortest suffix of w[1 . . p−1] which also occurs

as a prefix of w[ j′ . .n] (see Figure 5.6). Moreover, observe that |z| > ` by the greedy

construction of H `
j′ .

Recall that j′ ∈ T`j implies that w[ j′ . .n] can be decomposed into unbordered

prefixes of u (by Observation 5.3), with the first prefix of length `, denoted v =
w[ j′ . . j′+`−1]. With an occurrence at position j′, the factor z also admits such

a decomposition (by Observation 5.2), still with the first prefix v (due to |z| > |v|).
Additionally, note that w[p . . j′−1] can be decomposed into unbordered prefixes of v.

Concatenating the decompositions of z = w[i . . p−1], w[p . . j′−1], and w[ j′ . .n], we

conclude that w[i . .n] can be decomposed into unbordered prefixes of u with the first

prefix (in this unique decomposition) equal to v. Hence, i ∈S j′ belongs to the same

twin set as j′; i.e., it satisfies the first claim of the lemma.
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Additionally, in the aforementioned decomposition of w[i . .n] consider the factor

v′ = w[k . . p−1] which ends at position p−1. By the greedy construction of H `
j′ , its

length |v′| is strictly larger than `, so k ∈T`′j for `′ = |v′| > `. Moreover, recall that

(|z|, i)= (k+`′− i, i) is pushed onto the stack of j′. Consequently, i also satisfies the

second claim of the lemma.

A similar reasoning is valid for each i that will appear in S j′ .

�

Remark 5.3. If j and j′ are two references such that j′ < j and j′ ∈ TLUF[ j]
j then

S j′ =;

Lemma 5.6. If j is the parent of two references j′′ < j′, both of which belong to T`j ,
then

S j′ ∩S j′′ =;

Proof. The proof is trivial if ` = LUF[ j]. Let ` < LUF[ j], u = w[ j . . j +LUF[ j]−1]

and v be the shortest unbordered prefix of u cut at j′ and j′′ (i.e., |v| = `). Let

u′ = w[ j′ . . j′+LUF[ j′]−1] and u′′ = w[ j′′ . . j′′+LUF[ j′′]−1]. Here, the current call

to FINDHOOK function has been made on the reference j′′. Consider the largest

position i such that it is common to the stacks of j′ and j′′ i.e. i ∈ S j′ and i ∈ S j′′ .

Let the prefixes cut at i be z1 = w[i . . p] and z2 = w[i . .k]. Observe that i being the

largest position and j′ 6= j′′ ensure that |z1| 6= |z2|. Without loss of generality, let

|z1| < |z2| (examine Figure 5.7).

q j

u

z1

z2 u′′
u′

j′′p ki j′

vv1v vr vv
· · ·· · ·· · ·· · ·

xr

Figure 5.7: The pair (|z1|, i) and (|z2|, i) are pushed onto the stack of j′ and j′′ where
i is a position common to both S j′ and S j′′ .
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1. j′ cuts z2 and j′′ cuts z1: We proceed with the proof by showing below

that there is a reference between j′ and j that pushes j′ onto its stack, thus

contradicting the fact that j is the parent of j′.

overFollowing Observations 5.3 and 5.2, w[i . .k] can be decomposed into

unbordered prefixes of u′′ with the first prefix being z1, i.e. z2 = z1 · x1 · x2 · . . · xr.

Here, |xr| > |z1| otherwise z2 is bordered. Moreover, each xi larger than v has

corresponding position in S j′′ and others (i.e. |xi| ≤ |v|) are skipped because

of HOOK[·]. Let xs be the first of these xi,1 ≤ i ≤ r such that |xs| > |z1|. In

the occurrence of z2 at j′, let j0 be the position corresponding to xs i.e. j0 =
j′+|z1 · · ·xs−1|. Note that j0 < j as xs, like z1 and each xi such that |xi| > |v|, has

v as a proper prefix and some vi as a proper suffix where vi is an unbordered

prefix of u longer than v (from Lemma 5.5).

Now, we prove that j0 is a (potential) reference. The fact that j′ is a potential

reference ensures that ũ = w[ j0 . . j′+|u′|−1] is a repeated factor. Moreover,

ũ contains the luf at j0, say u0, because u0 is a factor (or suffix) of u′ (since

w[ j′ . . j0 −1] can be decomposed into prefixes of xs); an implication is that

|ũ| ≥ |u0|. Thus, j0 is a reference if the last occurrence of ũ is at j0. For

contradiction, assume that the factor ũ has another occurrence at some position

larger than j0. This implies that there is another occurrence of u after j as u0

contains u (the luf at any position which is in the stack of j, ends at or after

j+|u|−1). This is not possible as the last of the occurrences of u after j would

cause j, j′, j′′ etc. to go onto its stack and j would no longer be the parent of j′

or j′′.

Summing up, j0 < j is a reference with xs as a prefix of u0. If j is the parent of

j0 then j0 would have pushed j′ onto its stack, otherwise another reference

j−1, j0 < j−1 < j that pushed j0 onto its stack would have pushed j′ as well. In

either case, j is not the parent of j′ which is a contradiction.

2. j′ cuts z1 and j′′ cuts z2: Using the similar argument as in Case 1, we can

prove that this case leads to the conclusion that there is another reference

between j′′ and j that would push j′′ onto its stack and hence contradict that

j is the parent of j′′.

�

106



CHAPTER 5. LONGEST UNBORDERED FACTOR ARRAY

Lemma 5.7. If j1 and j2 are base references such that j1 6= j2, then

S j1 ∩S j2 =;

Proof. Suppose that the subroutine FINDHOOK is called for each position in w. We

define a base position analogously as a position that does not appear in any stack.

For a proof by contradiction, let i be the largest element of S j1 ∩S j2 , with (`1, i)
and (`2, i) pushed onto the stacks of j1 and j2, respectively. Let j1 > j2. Note that

i+`1 ∈ { j1}∪S j1 and i+`2 ∈ { j2}∪S j2 . Thus, our choice of j1 6= j2 as base positions

and i as the largest element of S j1 ∩S j2 guarantees `1 6= `2.

Let u be the longest unbordered factor at j1. We first assume that `1 < `2. Note

that due to the assumption that i ∈S j1 , the suffix w[i . .n] can be decomposed into

unbordered prefixes of u (by Observation 5.3). In particular, w[i . . i+`2−1] admits

such a decomposition w[i . . i+`2 −1]= v1 · · ·vr with |v1| = `1. Moreover, observe that

|vr| > `1, otherwise vr would be a border of w[i . . i+`2 −1].

Let vs be the first of these factors satisfying |vs| > `1 and let k = j2 +|v1 · · ·vs−1|.
Note that w[ j2 . .k−1] admits a decomposition w[ j2 . .k−1] = v1 · · ·vs−1 into unbor-

dered prefixes of vs. Consequently, j2 ∈ Sk if k is a base position, and j2 ∈ Sk′ if

k is not a base position and k ∈ Sk′ for some base position k′. In either case, this

contradicts the assumption that j2 is a base position. A similar line of argument

contradicts the assumption that j1 is a base position for the case when `1 > `2. Thus,

base positions have disjoint stacks. Additionally, observe that the longest unbordered

factor at some base position j, denoted as u, has the last occurrence at j i.e. u has

no occurrence after j (otherwise j can not be a base position because it will be in the

stack of the position of the last occurrence of u).

In fact, Algorithm 5.1 calls the subroutine FINDHOOK on a subset of positions,

i.e. only on potential references. However, as we show below, all base references are

actually base positions, hence their stacks are disjoint.

For a proof by contradiction, suppose that j′ is a base reference that would

have been pushed onto the stack of a base position j > j′ if Algorithm 5.1 had not

skipped j (implying that j is not a potential reference). This assumption entails that

there is no occurrence of u (where u is the longest unbordered factor at j) at any

position k < j since u has the last occurrence at j and any previous occurrence would

make j a potential reference. Consequently, the longest unbordered factor at j′ has

u′ = w[ j′ . . j+|u|−1] as its prefix (as u is unbordered and u′ can be decomposed into

unbordered proper prefixes of u followed by u). For j′ to be a potential reference, u′
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must have an occurrence on its left. However, this means that u has an occurrence

at some k < j′ < j, contrary to our assumption. �

5.4.3 Finding the Shortest Border (Subroutine FINDBETA)

Given a reference j and a position q, the subroutine FINDBETA returns the length

β of the shortest prefix of w[ j . . j + LUF[ j]− 1] that is a suffix of w[1 . . q − 1], or

β= 0 if there is no such prefix; note that the sought shortest prefix is necessarily

unbordered.

To find this length, we use ‘prefix-suffix queries’ of [KRRW15, KRRW12]. Such a

query, given a positive integer d and two factors x and y of w, reports all prefixes

of x of length between d and 2d that occur as suffixes of y. The lengths of the

sought prefixes are represented as an arithmetic progression, which makes it trivial

to extract the smallest one. A single prefix-suffix query can be implemented in

O (1) time and O (n) space after randomized pre-processing of w which takes O (n)

time in expectation [KRRW15], or O (n logn) time with high probability [KRRW12].

Additionally, replacing the hash tables with the deterministic dictionaries [Ruž08],

yields an O (n logn log2 logn)-time deterministic pre-processing.

To implement FINDBETA, we set x = [ j . . j+LUF[ j]−1], y = [1 . . q−1] and we

ask prefix-suffix queries for subsequent values d = 1,3, . . . ,2k −1, . . . until d exceeds

min(|x|, |y|). Note that we can terminate the search as soon as a query reports a

non-empty answer. Hence, the running time is O (1+ logβ) if the query is successful

(i.e., β 6= 0) and O (logn) (as LUF[ j]< n) otherwise.

Furthermore, we can expedite the calls to FINDBETA if we already know that

β ∉ {1, . . . ,`}. In this case, the running time improves to O (1+ log β

`
) because we can

start the search with d = `+1. Specifically, if j is not a base reference and belongs to

T`j′ for some j′, we can start from d = 2`+1 because Lemma 5.5.2 guarantees that

β≥ `+`′ > 2`.

5.5 Analysis

Algorithm 5.1 computes the longest unbordered factor at each position i; position i is

a start reference or it refers to some other position. The correctness of the computed

LUF[i] follows directly from Lemmas 5.1 through 5.3.
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5.5.1 Time Complexity

The analysis of the algorithm’s running time necessitates probing of the total time

consumed by FINDHOOK and the time spent by FINDBETA which, in turn, can be

measured in terms of the total size of the stacks of various references (i.e. total

number of push operations throughout the algorithm) .

Lemma 5.8. The total size of all the stacks used throughout the algorithm is
O (n logn)iii. Moreover, the total running time of the subroutine FINDBETA is O (n logn).

Proof. First, we shall prove that any position p belongs to O (logn) stacks.

By Lemma 5.5.1, the stack of any reference is a subset of the stack of its parent.

Moreover, by Lemma 5.6, the stacks of references sharing the same parent are

disjoint. A similar argument (presented in Lemma 5.7) shows that the stacks of the

base references are disjoint.

Consequently, the references j1 > . . .> js whose stacks S j i contain p form a chain

with respect to the parent relation: j1 is a base reference, and the parent of any

subsequent j i is j i−1. Let us define `1, . . . ,`s so that p ∈ T`i
j i

. By Lemma 5.5.2, for

each 1 ≤ i < s, there exist ki and `′i > `i such that ki ∈ T`
′
i

j i
and `i+1 = ki − p+`′i ≥

`i +`′i > 2`i. Due to 1≤ `i ≤ n, this yields s ≤ 1+ logn =O (logn), as claimed.

Next, let us analyse the successful calls to FINDBETA such that FINDBETA(q, j)
returns β where β> 0 and p = q−β. Observe that after each such call, p is inserted

to S j and to the twin set Tβj , i.e, j = j i and β = `i for some 1 ≤ i ≤ s. Moreover,

if i > 1, then j i ∈ T`i−1
j i−1

, which we are aware of while calling FINDBETA. Hence,

we can make use of the fact that `i ∉ {1, . . . ,2`i−1} to find β= `i in time O (log `i
`i−1

).

For i = 1, the running time is O (1+ log`1). Hence, the overall running time of

successful queries FINDBETA(q, j)=β with p = q−β is O (1+ log`1 +∑s
i=2 log `i

`i−1
)=

O (1+ log`s)=O (logn), which sums up to O (n logn) across all positions p.

As far as the unsuccessful calls (FINDBETA(q, j)= 0) are concerned, we observe

that each such call terminates the enclosing execution of FINDHOOK. Hence, the

number of such calls is bounded by n and their overall running time is clearly

O (n logn). �

iiiSee Appendix A for an alternative intuitive proof.
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Theorem 5.1. Given a word w of length n, Algorithm 5.1 solves the LONGEST

UNBORDERED FACTOR ARRAY problem in O (n logn) time with high probability. It
can also be implemented deterministically in O (n logn log2 logn) time.

Proof. Assuming an integer alphabet, the computation of LSF` and LSFr arrays

along with the constant time per position initialisation of the other arrays sum up

the pre-processing stage (Lines 2–8) to O (n) time. The running time required for

the assignment of the luf for all positions (Lines 9–20) is O (n). The time spent in

construction of the data structure to answer prefix-suffix queries used in FINDBETA

is O (n logn) with high probability or O (n logn log2 logn) deterministic.

Additionally, the total running time of the subroutine FINDHOOK for all the

references, being proportional to the aggregate size of all the stacks, can be deduced

from Lemma 5.8. This has been shown to be O (n logn) in the worst case, same as the

total running time of FINDBETA. The claimed bound on the overall running time

follows. �

5.5.2 Space Complexity

Analysis of the space used by the algorithm is straightforward – all the arrays

(LSFr,LSF`,LUF,HOOK) and the data-structure to answer the FINDBETA queries

consume linear space with respect to the length of w. The total space taken up by

all the stacks (and twin sets) are upper bounded by O (n logn) (from Lemma 5.8).

Overall, O (n logn) space is required by the algorithm.

5.5.3 Words Exhibiting Worst-Case Behaviour

To show that the upper bound shown in Lemma 5.8 (consequently Theorem 5.1)

in the worst case is tight, we design an infinite family of words that exhibit the

worst-case behaviour.

A word can be made to exhibit the worst-case behaviour if we force the maximum

number of positions to be pushed onto Θ(logn) stacks. This can be achieved as

follows.

1. Maximize the number of references: Every position in each twin set Tl
j is a

reference.
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2. Maximize the size of each stack: The largest position (reference) in any twin

set pushes the rest of the positions onto its stack. If j′ is largest reference in

T`j then S j′ =T`j − { j′}.

3. Maximize the number of twin sets obtained from a stack: This increases the

number of unbordered prefixes that can be cut at some position i, therefore,

increasing the number of repushes of i. This can be achieved by keeping

|T`j | = 2|T`+1
j |+1.

Using the above, Algorithm 5.3 creates a word w over Σ= {a,b}, such that the total

size of the stack of the base reference j (w[ j]= a) and the references that appear in

S j is O (logn).

Consider, for instance, the following words (generated by Algorithm 5.3) ex-

hibiting the maximum total size of the stacks used: w3 = (aabaabb)2, d = 3; w4 =
(aabaabbaabaabbb)2, d = 4; w5 = (aabaabbaabaabbbaabaabbaabaabbbb)2, d = 5;

etc., where d is the maximum number of stacks onto which some proportional

number of elements have been pushed by Algorithm 5.1. Position 1 in w4, for exam-

ple, is pushed onto four stacks paired with lengths 1, 3, 7, and finally 15; the deepest

tree of stacks corresponding to w4 has been shown in Figure 5.5. The total size of

the stacks used by each word from this family of words is thus Θ(n logn). Figure 5.8

shows the logarithmic increase (coloured blue) of the maximum number of stacks (d)

onto which some element gets pushed as n increases for the specified family of the

words. Moreover, the almost linear appearing red plot in the same figure exhibits

how the total size of the stacks used by Algorithm 5.1 grows with the length of these

specially designed words.

Algorithm 5.3 Create Word wd over Σ= {a,b} for a given d.
1: w ← ε

2: block← "a"
3: for i ← 1 to d−1 do
4: w ← w+block+w
5: block← block+ “b"
6: end for
7: w ← w+block
8: w ← w+w
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Figure 5.8: Plot showing the maximum number of stacks onto which some element
has been pushed (d) and the total size of the stacks used by Algorithm 5.1 for
specially designed words.

5.6 Practical Enhancement

In this section, we present an observation that provides a technical short-cut to

speed up the computations in practice, although it does not affect the asymptotic

time-bounds of the algorithm. This short-cut avoids the computations for finding

hooks for the references which are not the centre of a square. A square is a word of

the form uu; the first position of the second u is called the centre of the square.

Square Array

The square array (SQ) specifies, for each position i in w, whether there is a square

centred at i. Formally, the array SQ is defined as follows.

SQ[i]=
 1 if ∃ `> 0 such that w[i . . i+`−1]= w[i−` . . i−1],

0 otherwise.

For integer alphabets, we can compute for each position in w, the length of the

shortest square centered at this position (also known as the local period) in O (n)

time [DKK+04]. Thus, we can compute the array SQ in the pre-processing phase

trivially from this array of local periods.

Example 5.7. Consider the same word w = aabbabaabbaababbabab as in Exam-
ple 5.2. The associated square array is as follows.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
w[i] a a b b a b a a b b a a b a b b a b a b

SQ[i] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0

Lemma 5.9. If a position j is not the centre of any square (i.e. SQ[ j]= 0) then H `
j = j,

for all ` such that 0≤ `≤ LUF[ j].

Proof. Clearly, for `= 0, H `
j = j. For 0< `≤ LUF[i], assume that H `

j = q such that

1≤ q < j. If u = w[ j . . j+`−1] then let u1 be the last prefix in the decomposition of

w[q . . j−1] into unbordered prefixes of u. In this case, j is the centre of the shortest

square u1u1 (i.e. SQ[ j] 6= 0) which is a contradiction. Therefore, q = j. �

As a consequence of Lemma 5.9, if i is a potential reference such that SQ[i]= 0 then

HOOK[i] = i. For instance, in the running example (see Example 5.4) each of the

references 20, 17, and 15 is a potential reference but is not the centre of some square

and thus the algorithm could avoid calling FINDHOOK on these references. In other

words, the algorithm can speed up by computing the H LUF[i]
i to update HOOK[i] by

calling FINDHOOK only when i is a potential reference such that SQ[i] 6= 0.
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6
CONCLUDING REMARKS

This dissertation presented three algorithms for problems – pertaining to

macro-level uncertainty and local regularity in strings – that arise in the

context of genomic sequence analysis. Below, we provide a brief summary of

the work covered in this dissertation and discuss some open problems and possible

research directions within the same framework as that of the presented work.

In Chapter 3, we presented an optimal i.e. O (n+m) time and space algorithm

to compute all superbubbles in a directed acyclic graph, where n is the number of

vertices and m is the number of edges, improving the best-known O (m logm)-time

algorithm for this problem [SSS+15]. It is also interesting to note that in this type of

graphs, that is, those constructed from sequences over a fixed-sized alphabet, the out-

degree of each vertex is bounded by the size of the alphabet (four for DNA alphabet)

and therefore the time complexity of the proposed algorithm is essentially linear in

n. Structures generalising superbubbles like ultrabubbles and snarls (for bidirected

and biedged graphs) have already been proposed [PNGH17]. Superbubbles and other

generalisations provide a basis for specifying the sites and alleles in the graphical

representation of a reference genomic cohort (showing genetic variations). However,

not every site corresponds to these structures. One possible research direction could

be to identify more general classes of subgraphs that could cover the parts of the

graph not falling under superbubbles and its analogous structures.

Motivated by the necessity of alternative representations of a reference sequence

for population-based genome assembly, in Chapter 4 we introduced and formalised
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the notion of elastic-degenerate strings. In particular, we presented a practically-

efficient algorithm for pattern matching in elastic-degenerate texts. Given a solid

pattern and an elastic-degenerate text, the presented algorithm runs in O (N+αγmn)

time, where m is the length of the given pattern, n and N are the length and total

size of the given elastic-degenerate text, respectively, and α and γ are the parameters,

respectively representing the maximum number of strings in any elastic-degenerate

symbol of the text and the maximum number of elastic-degenerate symbols that any

occurrence of the pattern may span in the text. Note that in applications like intra-

species genetic variations studies, the pattern is a read, the text is the reference

cohort of the population, α represents the number of sequences in the reference

cohort, and γ represents the number of genetic variation-sites falling in a full

occurrence. The values of these parameters are usually small and so the presented

algorithm is expected to work very fast in practice (as has been corroborated by the

presented experiments using synthetic data-sets). The space used by the algorithm is

linear in the size of the input. Elastic-degenerate strings as a model have opened up a

new line of research and several improved algorithms (with changed definitions of an

occurrence) have already been proposed [GIL+17, BPPR17, ANI+18, PR18, CGH18].

From a theoretical perspective, this model could potentially be adapted for classical

string-problems (other than the pattern matching problem) like compression, finding

regularities etc.

In Chapter 5, an algorithm to compute the Longest Unbordered Factor Array of

a given word w for general alphabets has been presented, with a time-complexity

of O (n logn) with a high probability (or O (n logn log2 logn) deterministic), where

n is the length of w. This array specifies the length of the maximal unbordered

factor starting at each position of w. This is a major improvement on the running

time of the previously best worst-case algorithm working in O (n1.5) time for integer

alphabets [Gawrychowski et al., 2015]. We also showed that the analysis of our

algorithm is tight: an infinite family of words that exhibit the worst-case behaviour

of the algorithm was described in this chapter. We would like to highlight that the

Hook data-structure proposed in this chapter can be computed in a modular way i.e.

without referring to the Longest Unbordered Factor Array; calling the subroutine to

find the hook of each position i i.e. H w[i. .n]
i can be achieved in the same time-bounds

and thus can be used as an independent data-structure. Despite the theoretical

origin of this problem, because of the close association of borders with regularities

in strings, it may find applications in computational biology owing to the highly
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repetitive nature of genomic sequences. One possible avenue for this research is to

characterise a string using its Longest Unbordered Factor Array and the associated

Hook data-structure that we proposed in this chapter (Chapter 5). For example,

we observe that if u is the longest unbordered factor at some position i of a word

w and position q is H |u|
i then w[q . .n] can be decomposed into prefixes of u and a

careful selection of such positions may result in a compressed representation of a

string. Nevertheless, from a purely theoretical viewpoint, computing the longest

unbordered factor in O (n) time for integer alphabets remains an open problem.

Moreover, each of the presented algorithms has been implemented and the

corresponding tool along with its source code have been made publicly available

(https://github.com/Ritu-Kundu). It is worth mentioning that the rationale for imple-

mentation is different for each algorithm as described below:

• The algorithm presented in Chapter 3 for finding superbubbles has a di-

rect application in identifying and defining sites in a reference graph. Its

corresponding tool was developed in the hope that it may be of use to the

bioinformatics community.

• The theoretical time bound of the algorithm for pattern matching in an elastic-

degenerate string (proposed in Chapter 4) suggests that the algorithm will

be impractical for large values of the parameters governing the running time.

However, in practice the parameters are usually small. An implementation

of the algorithm was required so that experiments could be conducted on

data-sets having parameter values similar to those in real data, in order to

corroborate that the algorithm is practical for real data-sets.

• The algorithm presented in Chapter 5 solves the problem of finding the longest

unbordered factor array of a given word which is mainly of theoretical interest.

An abstract analysis was proving to be insufficient owing to the large sizes of

the interesting input instances and multiple inter-dependent factors controlling

the behaviour of the algorithm. The implementation, therefore, was done to

enable a better understanding of how a partially developed solution progresses

and to gain detailed insights into its limitations and problems when the

algorithm was still being developed.
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AN ALTERNATIVE PROOF OF LEMMA 5.8

Below, a more verbose and intuitive proof of Lemma 5.8 is given. For a reference j′

with its parent j such that j′ ∈T`j , |S j′ | depends on three factors (following Lemma

5.5 and Lemma 5.6):

1. |T`j |: every position in S j′ will come from T`j (Lemma 5.5 (1)).

2. The number of references in T`j : T
`
j is partitioned into disjoint stacks; each

corresponds to a distinct reference in T`j (Lemma 5.6).

3.
∑LUF[ j]

i=`+1 |Ti
j|: the distribution of positions in the twin sets corresponding to

lengths greater than ` also decides the positions in S j′ (Lemma 5.5 (2)).

The computations done by FINDHOOK when called on a base reference j and

all references j′ ∈S j, is directly proportional to the size of the corresponding tree.

The following corollaries assist in determining the upper bound on the depth of the

corresponding tree and hence its size; see Lemma A.1 below.

Corollary A.1. If j and j′ are the references such that j is the parent of j′ then

|S j′ | < |S j|/2

Proof. Lemma 5.5 states that for each i ∈S j′ there exists a k which was added to

T`
′

j , with `′ > `, such that the pair (k+`′− i, i) is pushed onto the stack of j′. As a

result, i,k ∈S j while k ∉S j′ yielding |S j′ | < |S j|/2 (note that j′ itself is in S j but not

in S j′). �

117



APPENDIX A. AN ALTERNATIVE PROOF OF LEMMA ??

Lemma A.1. For a base reference j,∑
j′∈R∩S j

|S j′ | < |S j| log |S j|

where R is the set of all references.

Proof. Consider a base reference j such that T`1
j ,T`2

j , · · · ,T`t
j are the (non-empty)

twin sets obtained from S j and `1 < `2 < ·· · < `t. An upper bound on the size of the

tree associated with j can be obtained if we maximize the depth of the tree while

populating the tree to the maximum at every level in the following way:

1. Every position i ∈T`j is a reference.

2. The largest position (reference) in any twin set at any level pushes every other

position onto its stack.

This constrains the total stack size at any level to be less than |S j|. From Lemma 5.6

the stacks of the references sharing the same parent are disjoint. Using the fact that

stacks at the same level within a tree are disjoint along with Corollary A.1, it can be

inferred that the depth is no more than log |S j|.
Thus, the total size of the tree (consequently, the total sizes of the stacks of all

the references in S j, excluding that of the base reference j) is less than |S j| log |S j|.
�

Lemma A.2. The total size of all the stacks used by Algorithm 1 is O (n logn).

Proof. Let R and B ⊆ R be the set of all references and all base references, res-

pectively. For two references j1, j2 ∈ B we have S j1 ∩S j2 = ; (From Lemma 5.7)

i.e. stacks at the root of different trees are disjoint. Additionally,
∑

j∈B |S j| < n. By

summing the result from Lemma A.1 for the set of all base references, we complete

the proof. �
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