

MINING ACUTE STROKE PATIENTS' DATA USING SUPERVISED MACHINE LEARNING

Ritu Kundu Toktam Mahmoodi November 15, 2017

Presenting at: 7th International Conference on Mathematical Aspects of Computer and Information Sciences (MACIS 2017)

November 15-17, 2017 in Vienna, Austria

Introduction

Dataset

Methodology

Evaluation Results and Comparison

INTRODUCTION

DATASET

AMT or MMSE

Onset

3 months

Annually thereafter

Various Risk Factors

prior to stroke

Socio-demographics

South London Stroke Register (SLSR)

Stroke Symptoms & Severity

Previous Medical History

Stroke Classification ECG, ECHO, Blood Investigations & Brain Imaging METHODOLOGY

Treatment Types:

First Approach

- Each sub-type of the main treatment types : <u>treatment-class</u>
- Predict if a treatment-class leads to recovery or not

Second Approach

- For each treatment type, suggest its subtype
- Use <u>similarity</u> with the <u>recovered</u> patients

Labelling *Recovered* and *not-recovered*:

- Scores accessing cognitive impairment:
 - Abbreviated Mental Test: Threshold 7
 - Mini-Mental State Examination: Threshold - 24
- Used AMT (or scaled MMSE accordingly)
- Moving average: window of 3

Cleaning Up:

- Numerical to nominal
- Feature selection

Selected Treatment-classes

Index	Type of treatment
1	Antiplatelet therapy
2	Aspirin
3	Anticoagulation-subcutaneous
4	Anticoagulation-oral
5	Thrombolysis-oral
6	Cholesterol lowering drugs
7	Naso-gastric or PEG feeding
8	Intavenous fluids

First Approach

- n = 520
- Treatment classes = 8

Second Approach

- n = 390
- Treatment classes = 7 (merged 3 and 4)

EVALUATION RESULTS AND COMPARISON

	Accuracy (in %)	Kappa measure	Area under ROC
Antiplatelet	J48	J48	ADTree
	87.0968	0.578	0.871
Aspirin	ADTree	ADTree	NB
	85.7988	0.5375	0.846
Anticoag-subcut	All except SVM	NB, NBTree	NB, NBTree
	90.9091	0.6207	1
Anticoag-oral	MLP, ConjuctiveRules, ADTree, J48	NB, DecisionTable, NBTree	ADTree
	72.7273	0.2326	0.75
Thrombo-oral	NB, J48, NBTree	J48	NB, J48, NBTree
	90	0.76447	1
Cholesterol	ADTree	ADTree	ADTree, J48
	86.3095	0.4889	0.883
Intavenous	ADTree	ADTree	ADTree
	79.3814	0.4476	0.807
NP feeding	MLP	MLP	NB, NBTree
	81.8182	0.581	0.867

	Accuracy (in %)	Kappa measure	Area under ROC
Antiplatelet	Both	KStar	KStar
	65.019	0.168	0.612
Aspirin	KStar	KStar	KStar
	54.5455	0.2287	0.634
Anticoagulation	KNN	KStar	KStar
	88.9734	0.0504	0.565
Thrombolysis	KNN	KNN	KStar
	88.5496	0.0041	0.562
Cholesterol-oral	KNN	KNN	KNN
	64.9805	0.1647	0.68
Intavenous	KNN	KNN	KNN
	67.6113	0.2676	0.709
NP feeding	KNN	KStar	KNN
	91.8605	0.179	0.82

References

State of the Nation: stroke statistics. Stroke Association, January 2015.
Strokes rising among people of working age, warns charity.
H. Asadi, R. Dowling, B. Yan, and P. Mitchell.
Machine learning for outcome prediction of acute ischemic stroke post intra-arterial
therapy.
PLoS ONE, 9, February 2014.
P. Bentley, J. Ganesalingam, A. L. C. Jones, K. Mahady, S. Epton, P. Rinne, P. Sharma, O. Halse, A. Mehta, and D. Rueckert
Prediction of stroke thrombolysis outcome using CT brain machine learning.
NeuroImage: Clinical, 4:635-640, 2014.
M. J. Bouts, I. A. Tiebosch, A. van der Toorn, M. A. Viergever, O. Wu, and R. M.
Dijkhuizen.
Early identification of potentially salvageable tissue with mri-based predictive algorithms
after experimental ischemic stroke.

Journal of Cerebral Blood Flow & Metabolism, 33(7):1075-1082, 2013.

R. Cuingnet, C. Rosso, S. Lehéricy, D. Dormont, H. Benali, Y. Samson, and O. Colliot. Spatially regularized svm for the detection of brain areas associated with stroke outcome. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 316–323. Springer, 2010.

