
Superbubbles
and their linear-time detection

Ritu Kundu

King’s College London

February 16, 2019

Joint work with
Ljiljana Brankovic, Costas S. Iliopoulos, Manal Mohamed, Solon P. Pissis, and Fatima Vayani

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 1 / 18

Outline

1. Introduction

2. Linear-Time Algorithm

3. Analysis

4. Summary

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 2 / 18

Introduction

Outline

1 Introduction
Motivation
Superbubble
Detection

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 3 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

Genome Assembly

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

Overlap-Layout-Consensus

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

de Bruijn Graph

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

NSG

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

NSG

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Motivation

Motivation

Genome Assembly

Traditional

Overlap-Layout-Consensus

Next Generation Sequencing (NSG)

de Bruijn Graph

Motifs
Tips
Cross-links
Bubbles
More Complex Structures?
Superbubbles

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 4 / 18

Introduction Superbubble

Superbubble

Superbubble: 〈s, t〉

Definition [Onodera et al., 2013]
Let G = (V,E) be a directed graph. For any ordered pair of distinct nodes s and t, 〈s, t〉 is called
a superbubble if it satisfies the following:

reachability: t is reachable from s;

matching: the set of nodes reachable from s without passing through t is equal to the set
of nodes from which t is reachable without passing through s;

acyclicity: the subgraph induced by U is acyclic, where U is the set of nodes satisfying
the matching criterion;

minimality: no node in U other than t forms a pair with s that satisfies the conditions
above;

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 5 / 18

Introduction Superbubble

Example

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 6 / 18

Introduction Detection

Background

O(nm)-time algorithm [Onodera et al., 2013]
Topological sorting, starting from each vertex, to test if it is an entrance.

O(m logm)-time algorithm [Sung et al., 2015]

Partition graphs into a set of sub-graphs -

linear

subgraphs corresponding to each non-singleton strongly connected component
a subgraph corresponding to the set of all the nodes involved in singleton strongly
connected components.

Convert each subgraph into acyclic if it is cyclic.

linear

Find superbubbles in each of the subgraph.

O(m logm)

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 7 / 18

Introduction Detection

Background

O(nm)-time algorithm [Onodera et al., 2013]
Topological sorting, starting from each vertex, to test if it is an entrance.

O(m logm)-time algorithm [Sung et al., 2015]

Partition graphs into a set of sub-graphs - linear
subgraphs corresponding to each non-singleton strongly connected component
a subgraph corresponding to the set of all the nodes involved in singleton strongly
connected components.

Convert each subgraph into acyclic if it is cyclic. linear

Find superbubbles in each of the subgraph. O(m logm)

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 7 / 18

Linear-Time Algorithm

Outline

2 Linear-Time Algorithm
Properties
Description

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 8 / 18

Linear-Time Algorithm Properties

Properties of superbubbles

Lemma ([Onodera et al., 2013])

Any node can be the entrance (respectively exit) of at most one superbubble.

Lemma ([Sung et al., 2015])

Let G be a directed acyclic graph. We have the following two observations.
1) Suppose (p, c) is an edge in G, where p has one child and c has one parent, then 〈p, c〉 is a
superbubble in G.
2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such that p has exactly
one child t.

Lemma ([Brankovic et al., 2015])

For any superbubble 〈s, t〉 in a directed acyclic graph G, there must exist some child c of s such
that c has exactly one parent s.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 9 / 18

Linear-Time Algorithm Properties

Properties of superbubbles

Lemma ([Onodera et al., 2013])

Any node can be the entrance (respectively exit) of at most one superbubble.

Lemma ([Sung et al., 2015])

Let G be a directed acyclic graph. We have the following two observations.
1) Suppose (p, c) is an edge in G, where p has one child and c has one parent, then 〈p, c〉 is
a superbubble in G.
2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such that p has
exactly one child t.

Lemma ([Brankovic et al., 2015])

For any superbubble 〈s, t〉 in a directed acyclic graph G, there must exist some child c of s such
that c has exactly one parent s.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 9 / 18

Linear-Time Algorithm Properties

Properties of superbubbles

Lemma ([Onodera et al., 2013])

Any node can be the entrance (respectively exit) of at most one superbubble.

Lemma ([Sung et al., 2015])

Let G be a directed acyclic graph. We have the following two observations.
1) Suppose (p, c) is an edge in G, where p has one child and c has one parent, then 〈p, c〉 is
a superbubble in G.
2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such that p has
exactly one child t.

Lemma ([Brankovic et al., 2015])

For any superbubble 〈s, t〉 in a directed acyclic graph G, there must exist some child c of s such
that c has exactly one parent s.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 9 / 18

Linear-Time Algorithm Properties

Properties of superbubbles

Lemma ([Onodera et al., 2013])

Any node can be the entrance (respectively exit) of at most one superbubble.

Lemma ([Sung et al., 2015])

Let G be a directed acyclic graph. We have the following two observations.
1) Suppose (p, c) is an edge in G, where p has one child and c has one parent, then 〈p, c〉 is a
superbubble in G.
2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such that p has exactly
one child t.

Lemma ([Brankovic et al., 2015])

For any superbubble 〈s, t〉 in a directed acyclic graph G, there must exist some child c of s
such that c has exactly one parent s.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 9 / 18

Linear-Time Algorithm Properties

Properties of superbubbles

Lemma ([Onodera et al., 2013])

Any node can be the entrance (respectively exit) of at most one superbubble.

Lemma ([Sung et al., 2015])

Let G be a directed acyclic graph. We have the following two observations.
1) Suppose (p, c) is an edge in G, where p has one child and c has one parent, then 〈p, c〉 is a
superbubble in G.
2) For any superbubble 〈s, t〉 in G, there must exist some parent p of t such that p has exactly
one child t.

Lemma ([Brankovic et al., 2015])

For any superbubble 〈s, t〉 in a directed acyclic graph G, there must exist some child c of s
such that c has exactly one parent s.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 9 / 18

Linear-Time Algorithm Description

Abstract Description

Conceptual Idea

Input: G = (V,E), a Directed Acyclic Graph (DAG) where V and
E are sets of vertices and edges resp.(|V | = n, |E| = m)
Output: Superbubbles in G

Assumption: Single-source and single-sink (if not, add dummy
vertices)
Work-Flow:

Topologically order the vertices
Identify possible entrance and exit candidates: Candidate-list
Traverse candidate-list (in reverse topological order) to find
superbubbles using subroutines:

Report
Validate

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 10 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

Topological-order
For every edge (a, b), ord[a] < ord[b]

TopologicalSort
Recursive DFS (Depth First Search)

Example

Lemma (4)
Given a directed graph G = (V,E) containing a superbubble 〈s, t〉, a topological
ordering obtained by TopologicalSort has the following properties.
- For all x such that x ∈ U\{s, t}, ordD[s] < ordD[x] < ordD[t]
- For all y such that y 6∈ U , ordD[y] < ordD[s] or ordD[y] > ordD[t].

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

Candidate
A node v is an
- exit candidate: if it has at least one parent with exactly one child
(out-degree 1)
- entrance candidate: if it has at least one child with exactly one
parent (in-degree 1).

(From Lemmas 2 and 3)

Identifying Candidates
Check each node in V , in topological order, to identify whether it is
an exit or an entrance candidate (or both).
-If both, add twice (First as entrance and then as exit).

- Maximum size: 2n

- Candidates are added in topological order in Candidate-list.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

What?
Reports all the possible superbubbles (including the nested
ones) between given start and exit

Called for each exit candidate in decreasing order either by
main routine or through a recursive call to identify a nested
superbubble.

How?
Checks the possible entrance candidates between given
start and exit candidates starting with the nearest previous
entrance candidate (to exit), using Validate.

If valid, report it and recursively find nested
superbubbles.
Otherwise, mark the returned alternative entrance
candidate

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

What?
Returns start itself, given start and exit is a valid
superbubble.

Otherwise returns an alternative possible entrance for exit.

How?
Valid: For a valid superbubble 〈s, t〉, every x ∈ U\{s, t} has
- t as its topologically furthest child. - s as its topologically furthest parent.

Invalid:

Red Vertex is an alternate entrance candidate for the pair (s, t).

Maintain arrays of topological furthest child and parent resp.,
for each vertex and using RMQ to verify the conditions for
validity.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

What?
Returns start itself, given start and exit is a valid
superbubble.

Otherwise returns an alternative possible entrance for exit.

How?
Valid: For a valid superbubble 〈s, t〉, every x ∈ U\{s, t} has
- t as its topologically furthest child. - s as its topologically furthest parent.

Invalid:

Red Vertex is an alternate entrance candidate for the pair (s, t).

Maintain arrays of topological furthest child and parent resp.,
for each vertex and using RMQ to verify the conditions for
validity.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

What?
Returns start itself, given start and exit is a valid
superbubble.

Otherwise returns an alternative possible entrance for exit.

How?
Valid: For a valid superbubble 〈s, t〉, every x ∈ U\{s, t} has
- t as its topologically furthest child. - s as its topologically furthest parent.

Invalid:

Red Vertex is an alternate entrance candidate for the pair (s, t).

Maintain arrays of topological furthest child and parent resp.,
for each vertex and using RMQ to verify the conditions for
validity.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

What?
Returns start itself, given start and exit is a valid
superbubble.

Otherwise returns an alternative possible entrance for exit.

How?
Valid: For a valid superbubble 〈s, t〉, every x ∈ U\{s, t} has
- t as its topologically furthest child. - s as its topologically furthest parent.

Invalid:

Red Vertex is an alternate entrance candidate for the pair (s, t).

Maintain arrays of topological furthest child and parent resp.,
for each vertex and using RMQ to verify the conditions for
validity.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

What?
Returns start itself, given start and exit is a valid
superbubble.

Otherwise returns an alternative possible entrance for exit.

How?
Valid: For a valid superbubble 〈s, t〉, every x ∈ U\{s, t} has
- t as its topologically furthest child. - s as its topologically furthest parent.

Invalid:

Red Vertex is an alternate entrance candidate for the pair (s, t).

Maintain arrays of topological furthest child and parent resp.,
for each vertex and using RMQ to verify the conditions for
validity.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Linear-Time Algorithm Description

Detailed Description

Conceptual Idea
Topological
ordering
Identify
candidates
Find super-
bubbles
using
subroutines:

Report
Validate

Marking

Red Vertex is an invalid entrance not only for the superbubble ending at t but
also for all those ending at any other exit node (t’) between s and t for which s is
not a valid entrance and which also has Red Vertex as an alternative entrance.

Further, any candidate in the sequence of alternative entrance candidates
following Red Vertex (Orange Vertex and so on) can not be a valid entrance for
the superbubble ending at t’.

Marking: to skip this sequence later.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 11 / 18

Analysis

Outline

3 Analysis
Correctness
Running Time

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 12 / 18

Analysis Correctness

Correctness of the algorithm

Lemma (5)
Given s and t, the candidates for an entrance and an exit of a superbubble in G, respectively, subroutine Validate reports 〈s, t〉 if
and only if 〈s, t〉 is a superbubble.

Lemma (6)
For a given exit candidate e, let x be the alternative entrance candidate returned by the subroutine VALIDATE(s, e). Then any
entrance candidate between x and e can not be a valid entrance for the superbubble ending at e.

Theorem
Given a directed acyclic graph G = (V,E), where n = |V | and m = |E|, algorithm
SUPERBUBBLE correctly finds all superbubbles in G in decreasing order of the topological
ordering of their exit nodes.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 13 / 18

Analysis Running Time

Running Time of the algorithm

Lemma (7)
For the given exit and entrance candidates s and e1 (respectively), let mark[s] has been set to t1 which later gets reset to t2
while considering s with another exit candidate e2. Then any exit candidate between s and e2 can not reset mark[s] to t1
again.

Topological sorting: O(n+m)

Computing the candidates list: O(n+m)

All the list’s operations: constant time each, sums up to a linear cost O(n), as there are
at most 2n candidates in the list.

Each call for Validate: O(1) [RMQ]

Total calls to Validate: O(n+m).
Either validates the entrance candidate (O(n))
Or marks the corresponding position (O(m))

Once ‘marked’, it will not be considered again in subsequent calls [from
lemma (7)].
Marking is done every time an edge is found for the first time between a vertex
(in between an entrance candidate and an exit candidate) and its topologically
furthest parent.

Total time: O(n+m)
Ritu Kundu (King’s College London) Superbubbles February 16, 2019 14 / 18

Summary

Outline

4 Summary

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 15 / 18

Summary

Summary

A critical step of assembly algorithms utilizing de Bruijn graphs is to detect typical motif
structures in the graph caused by sequencing errors and genome repeats, and filter them
out; one such complex subgraph class is a so-called superbubble.

A supperbubble 〈s, t〉 is equivalent to a single source, single sink, acyclic directed
subgraph of G with source s and sink t, which does not have any cut nodes and preserves
all in-degrees and out-degrees of nodes in U\{s, t}, as well as the out-degree of s and
in-degree of t.

Given a directed acyclic graph G = (V,E), where n = |V | and m = |E|, all superbubbles
in G can be identified in O(n+m)-time.

What’s Next: More complex motifs

Paper appears in TCS (Open Access):
[L. Brankovica, C. S. Iliopoulos, R. Kundu, M. Mohamed, S. P. Pissis, F. Vayani:
Linear-time superbubble identification algorithm for genome assembly].

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 16 / 18

Summary

References

Brankovic, L., Iliopoulos, C. S., Kundu, R., Mohamed, M., Pissis,
S. P., and Vayani, F. (2015).
Linear-time superbubble identification algorithm for genome
assembly.
Theoretical Computer Science.

Onodera, T., Sadakane, K., and Shibuya, T. (2013).
Detecting superbubbles in assembly graphs.
In WABI, pages 338–348.

Sung, W., Sadakane, K., Shibuya, T., Belorkar, A., and Pyrogova,
I. (2015).
An O(m log m)-time algorithm for detecting superbubbles.
IEEE/ACM Trans. Comput. Biology Bioinform., 12(4):770–777.

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 17 / 18

Thank You!

Ritu Kundu (King’s College London) Superbubbles February 16, 2019 18 / 18

	Introduction
	Motivation
	Superbubble
	Detection

	Linear-Time Algorithm
	Properties
	Description

	Analysis
	Correctness
	Running Time

	Summary

